Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1647-1652, 2016
Effects of surfactants on the preparation of TiO2 nanoparticles in microwave-assisted sol-gel process and their photocatalytic activity
Nanosized TiO2 particles were prepared through facile sol-gel reaction by using microwave-assisted method. To investigate the effects of surfactants on the formation of TiO2, various additives (PVP, Triton X-100 and P123) were employed. The diameter of synthesized titania spheres could be controlled from 105 to 380 nm. The TiO2 particles prepared with P123 triblock copolymer showed large surface area and high pore volume. It was attributed to the fact that the pore site, where the surfactant template initially existed, was generated upon calcination process. The characteristics of prepared TiO2 nanoparticles were analyzed by using FE-SEM, TEM, XRD, FT-IR and N2 adsorption-desorption. As an application of prepared composites for water treatment, their photocatalytic performances for the degradation of methylene blue dye were examined by using UV-vis spectrophotometer under room light irradiation. The prepared TiO2 particles with Triton X-100 and P123 exhibited higher performance for methylene blue photo-degradation than that of P25. It was attributed to the effects of large specific surface area and high porosity.
[References]
  1. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  3. Chen X, Mao SS, Chem. Rev., 107(7), 2891, 2007
  4. Fujishima A, Honda K, Nature, 238, 37, 1972
  5. Werner JH, Guttler HH, J. Appl. Phys., 69, 1522, 1991
  6. Yu J, Qi L, Jaroniec M, J. Phys. Chem. C, 114, 13118, 2010
  7. Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Stangar UL, Bergant M, Mahne D, Nanotechnology, 18, 375709, 2007
  8. Jang I, Song K, Park JH, Kim M, Kim DW, Oh SG, Mater. Lett., 96, 214, 2013
  9. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269, 2001
  10. Sakthivel S, Kisch H, Angew. Chem.-Int. Edit., 42, 4908, 2003
  11. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG, J. Am. Chem. Soc., 126(15), 4782, 2004
  12. Ohno T, Mitsui T, Matsumura M, Chem. Lett., 32(4), 364, 2003
  13. Brus L, Appl. Phys. A-Mater. Sci. Process., 53, 465, 1991
  14. Wang C, Zhang X, Zhang Y, Jia Y, Yang J, Sun P, Liu Y, J. Phys. Chem. C, 115, 22276, 2011
  15. Wang C, Zhang X, Zhang Y, Jia Y, Yuan B, Yang J, Sun P, Liu Y, Nanoscale, 4, 5023, 2012
  16. Jang I, Song K, Oh SG, Chem. Lett., 41(2), 173, 2012
  17. Jiang J, Oberdorster G, Biswas P, J. Nanopart. Res., 11, 77, 2009
  18. Fu X, Clark LA, Yang Q, Anderson MA, Environ. Sci. Technol., 30, 647, 1996
  19. Yang J, Zhang J, Zhu LW, Chen SY, Zhang YM, Tang Y, Zhu YL, Li YW, J. Hazard. Mater., 137(2), 952, 2006
  20. Tompsett GA, Conner WC, Yngvesson KS, ChemphysChem, 7, 296, 2006
  21. Wang Y, Jiang ZH, Yang FJ, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 128, 229, 2006
  22. Suwanchawalit C, Wongnawa S, J. Nanopart. Res., 12, 2895, 2010
  23. Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL, J. Catal., 219(1), 107, 2003
  24. Huang D, Liao S, Quan S, Liu L, He Z, Wan J, Zhou W, J. Mater. Res., 22, 2389, 2007
  25. Zhang Y, Lu J, Cryst. Growth Des., 8, 2101, 2008
  26. Doeuff S, Henry M, Sanchez C, Livage J, J. Non-Cryst. Solids, 89, 206, 1987
  27. Wu JM, Yan H, Zhang XH, Wei LQ, Liu XG, Xu BS, J. Colloid Interface Sci., 324(1-2), 167, 2008
  28. Zheng MP, Jin YP, Jin GL, Gu MY, J. Mater. Sci. Lett., 19(5), 433, 2000
  29. Everett DH, Haul L, Pure Appl. Chem., 57, 603, 1985
  30. Roberts GW, Satterfield CN, Ind. Eng. Chem. Fundam., 4, 288, 1965
  31. Park JH, Jang I, Song K, Oh SG, J. Phys. Chem. Solids, 74, 1056, 2013