Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1640-1646, 2016
Synthesis of magnetic Co1-xNixFe2O4/carbon nanotubes with controlled microstructure for adsorption of pentachlorophenol
Magnetic Co1-xNixFe2O4/Carbon nanotube (CNTs) nanocomposite was successfully prepared by hydrothermal method and used for the adsorption of pentachlorophenol. The properties of Co1-xNxFe2O4/CNTs were characterized by scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffractometry, Brunauer-Emmett-Teller surface area determination, and magnetic measurement. Results showed that the Co1-xNixFe2O4 nanoparticles with amorphous structure are dispersed uniformly on the CNTs, which enhanced the adsorption capacity. The Co1-xNixFe2O4/CNTs as a magnetic material are easy to separate from the aqueous solution in magnetic field. The adsorption capacity and magnetization were improved by controlling the Ni content and calcination temperature. In addition, the Co1-xNixFe2O4/CNTs loaded with pentachlorophenol (PCP) could be regenerated by microwave radiation and the regeneration efficiency reached 110% after six regeneration cycles.
[References]
  1. Jin ZH, Yu C, Wang XY, Wan Y, Li D, Lu GZ, J. Hazard. Mater., 186(2-3), 1726, 2011
  2. US Environmental Protection Agency, National pollutant discharge elimination system, Code of FederalRe gulations, 40 (1980-1988), Part 122. US Government Printing Office, Washington, DC.
  3. Sanjoy KB, Qiang Y, Peikang J, J. Hazard. Mater., 49, 143, 1996
  4. Cho SY, Kim SJ, Kim TY, Moon H, Kim SJ, Korean J. Chem. Eng., 20(2), 365, 2003
  5. Jin ZH, Yu C, Wang XY, Wan Y, Li D, Lu GZ, J. Hazard. Mater., 186(2-3), 1726, 2011
  6. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219, 2004
  7. Bandara J, Mielczarski JA, Kiwi J, Appl. Catal. B: Environ., 34(4), 307, 2001
  8. Ghaffari A, Tehrani MS, Husain SW, Anbia M, Azar PA, J. Nanostruct. Chem, 4, 2, 2014
  9. Zhou LC, Meng XG, Fu JW, Yang YC, Yang P, Mi C, Appl. Surf. Sci., 292, 735, 2014
  10. Gupta VK, Mittal A, Jain R, Mathur M, Sikarwar S, J. Colloid Interface Sci., 303(1), 80, 2006
  11. Ren XM, Chen CL, Nagatsu M, Wang XK, Chem. Eng. J., 170(2-3), 395, 2011
  12. Yang X, Lee J, Yuan L, Chae SR, Peterson VK, Minett AI, Yin Y, Harris AT, Carbon, 59, 160, 2013
  13. Alkaim AF, Sadik Z, Mahdi DK, Alshrefi SM, Al-Sammarraie AM, Alamgir FM, Singh PM, Aljeboree AM, Korean J. Chem. Eng., 32(12), 2456, 2015
  14. Jia BP, Gao L, J. Phys. Chem. B, 111(19), 5337, 2007
  15. Fraczek-Szczypta A, Menaszek E, Blazewicz S, J. Nanomater., 13, 99, 2011
  16. Chang YC, Chen DH, J. Colloid Interface Sci., 283(2), 446, 2005
  17. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM, Carbon, 40, 2177, 2002
  18. Salam MA, Gabal MA, Obaid AY, Synth. Met., 161, 2651, 2012
  19. Gupta VK, Agarwal S, Saleh TA, Water Res., 45, 2207, 2011
  20. Wei H, Xu L, Ren J, Jia L, Colloids Surf. A: Physicochem. Eng. Asp., 405, 38, 2012
  21. Zhu HY, Jiang R, Xiao L, Zeng GM, Bioresour. Technol., 101(14), 5063, 2010
  22. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y, J. Hazard. Mater., 164(2-3), 1517, 2009
  23. Yu F, Chen JH, Chen L, Huai J, Gong WY, Yuan ZW, Wang JH, Ma J, J. Colloid Interface Sci., 378, 175, 2012
  24. Farghali AA, Bahgat M, El Rouby WMA, Khedr MH, J. Solution Chem., 41, 2209, 2012
  25. Cui CY, Quan X, Yu HT, Han YH, Appl. Catal. B: Environ., 80(1-2), 122, 2008
  26. Cui CY, Zheng QZ, Han YH, Xin YJ, Appl. Surf. Sci., 346, 99, 2015
  27. Wu HQ, Li TT, Xia LL, Zhang XJ, Mater. Res. Bull., 48(11), 4785, 2013
  28. Li HX, Luo HS, Zhuang L, Dai WL, Qiao MH, J. Mol. Catal. A-Chem., 203(1-2), 267, 2003
  29. Wu FC, Tseng RL, Juang RS, Water Res., 35, 613, 2001
  30. Li JM, Meng XG, Hu CW, Du J, Bioresour. Technol., 100(3), 1168, 2009
  31. Lewis TJ, IEEE Trans. Dielectr. Electr. Insul., 11, 739, 2004
  32. Li G, Sheng LM, Yu LM, An K, Ren W, Zhao XL, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 193, 153, 2015