Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1530-1533, 2016
Alkaliphilic lysine decarboxylases for effective synthesis of cadaverine from L-lysine
The enzymatic decarboxylation of L-lysine using lysine decarboxylase is a promising biological approach for producing cadaverine, a versatile platform chemical for bio-polyamides. However, due to the problem with elevated pH in the reaction solution during the enzymatic process, it is desirable to use lysine decarboxylases effectively active in alkaline conditions. In this study, the catalytic properties of three lysine decarboxylases from Selenomonas ruminantium (srLDC), Vibrio vulnificus (vvLDC), and Geobacillus thermodenitrificans (gtLDC) were characterized, and the applicability of the enzymes in alkaline conditions was investigated. Among the three enzymes, only vvLDC exhibited effective activity in alkaline pH conditions. The conversion rate of vvLDC was 1.5-fold higher than that of srLDC and 5.3-fold higher than that of gtLDC in pH 9.0. The results indicate that vvLDC is more advantageous than srLDC and gtLDC for the enzymatic conversion of L-lysine to cadaverine in alkaline conditions.
[References]
  1. Adkins J, Pugh S, McKenna R, Nielsen DR, Front. Microbiol., 3, 313, 2012
  2. Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C, Scientific Reports, 4, 5657, 2014
  3. Cai Z, Mei S, Lu Y, He Y, Pi P, Cheng J, Qian Y, Wen X, Int. J. Mol. Sci., 14, 20682, 2013
  4. Adkins J, Pugh S, McKenna R, Nielsen DR, Front. Microbiol., 3, 313, 2012
  5. Kind S, Wittmann C, Appl. Microbiol. Biotechnol., 91(5), 1287, 2011
  6. Zhang K, Cai H, Wang C, Zhang HL, XiandaiHuagong/Modern Chem. Ind., 32, 21, 2012
  7. Puiggali J, Franco L, Aleman C, Subirana JA, Macromolecules, 31(24), 8540, 1998
  8. Morales-Gamez L, Soto D, Franco L, Puiggali J, Polymer, 51(24), 5788, 2010
  9. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 82(1), 115, 2009
  10. Li N, Chou H, Yu L, Xu Y, Biotechnol. Bioprocess Eng., 19, 965, 2015
  11. Park YK, Bearson B, Bang SH, Bang IS, Foster JW, Mol. Microbiol., 20, 605, 1996
  12. Moreau PL, J. Bacteriol., 189, 2249, 2007
  13. Romano A, Trip H, Lolkema JS, Lucas PM, J. Bacteriol., 195, 1249, 2013
  14. Vienozinskien J, Januseviciut R, Pauliukonis A, Kazlauskas D, Anal. Biochem., 146, 180, 1985
  15. Soda K, Moriguchi M, Biochem. Biophys. Res. Commun., 34, 34, 1969
  16. Takatsuka Y, Onoda M, Sugiyama T, Muramoto K, Tomita T, Kamio Y, Biosci. Biotechnol. Biochem., 63, 1063, 1999
  17. Sugawara A, Matsui D, Takahashi N, Yamada M, Asano Y, Isobe K, J. Biosci. Bioeng., 118(5), 496, 2014
  18. Kamio Y, Terawaki Y, J. Bacteriol., 153, 658, 1983
  19. Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y, J. Bacteriol., 179, 4486, 1997
  20. Kim HS, Kim BH, Cho YD, Arch. Biochem. Biophys., 354, 40, 1998
  21. Antoine FR, Wei CI, Littell RC, Marshall MR, J. Agric. Food Chem., 47, 5100, 1999
  22. Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA, J. Biol. Chem., 282, 27115, 2007
  23. Yamamoto S, Imamura T, Kusaba K, Shinoda S, Chem. Pharm. Bull., 39, 3067, 1991
  24. Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH, Biochemistry, 13, 662, 1974