Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 1095-1103, 2016
Multiwalled carbon nanotubes and fluoroelastomer antistatic nanocomposite for automotive fuel system components
Fluoroelastomer (FKM) composites, reinforced with multiwalled carbon nanotubes (MWNTs), were prepared by conventional method to determine the possibility of using MWNTs to develop an antistatic composite in automotive fuel systems. The results obtained from the composite containing 0-9 phr of MWNTs were compared. A 5 points increase in hardness was achieved with the addition of only 1 phr of MWNTs and 9 phr added FKM composite was increased 6.4MPa in tensile strength compared to the MWNTs unfilled FKM composite. In addition, electrical conductivity increased from 0 to 1.039 Scm.1 with increase in the MWNTs concentration, and the dynamic damping property was increased in the rubbery state region accordingly. These phenomena can be explained by the MWNTs networks formed in FKM matrix. This research will therefore be useful in the development of an antistatic rubber composite for fuel system components, which are deformed or vibrated while in operation.
[References]
  1. Akhlaghi S, Gedde UW, Hedenqvist MS, Renew. Sust. Energ. Rev., 43, 1238, 2015
  2. Gao J, Gu Z, Song G, Li P, Liu W, Appl. Clay Sci., 42, 272, 2008
  3. http://www.trelleborg.com/en/Elastomer-Laminates/Rubber-Sheeting/VITON/.
  4. Russell T, Walder J, Rich A, Sea Technol., 11, 12, 2005
  5. Lorenz H, Fritzsche J, Das A, Stockelhuber KW, Jurk R, Geinrich G, Kluppel M, Compos. Sci. Technol., 69, 2135, 2009
  6. Dick JS, in Rubber Technology, Dick JS, Eds., Hanser Publishers (2001).
  7. White JL, Kim K, Thermoplastic and Rubber Compounds, Hanser Publishers (2008).
  8. Bokobza L, Rapoport O, J. Appl. Polym. Sci., 85(11), 2301, 2002
  9. Bokobza L, Polym. J., 48, 4907, 2007
  10. Kader MA, Nah C, Polymer, 45(7), 2237, 2004
  11. Geng Y, Liu MY, Li J, Shi XM, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 39, 1876, 2008
  12. Beyer G, Fire Mater., 26, 291, 2002
  13. Iijima S, Nature, 354, 56, 1991
  14. Lee SH, Choi SH, Choi JI, Lee JR, Youn JR, Korean J. Chem. Eng., 27(2), 658, 2010
  15. Song YS, PhD thesis, Seoul National University (2004).
  16. Tomanek D, Jorio A, Dresselhaus M, Dresselhaus G, in Carbon Nanotubes, Jorio A, Dresselhaus G, Dresselhaus M, Eds.,Springer-Verlag Berlin (2008).
  17. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54, 1996
  18. De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A, Appl. Surf. Sci., 254(1), 262, 2007
  19. Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M, Macromol. Res., 13(3), 206, 2005
  20. Ha H, Kim SC, Ha KR, Macromol. Res., 18(5), 512, 2010
  21. Ha H, Kim SC, Ha K, Macromol. Res., 18(7), 660, 2010
  22. Ha H, Kim SC, Ha KR, Macromol. Res., 18(7), 674, 2010
  23. Lu L, Zhai YH, Zhang Y, Ong C, Guo SR, Appl. Surf. Sci., 255(5), 2162, 2008
  24. Nanocyl, NC7000 Technical Datasheet. http://www.nanocyl.com/en/content/download/417/2536/file/DM-Qual-05-TDS%20NC7000-V05.pdf.
  25. Sullivan AB, Wise RW, in Rubber Technology, Morton M, Eds., Kluwer Academic Publisher (1999).
  26. Abdalla M, Dean D, Robinson P, Nyairo E, Polymer, 49(15), 3310, 2008
  27. Sui G, Zhong WH, Yang XP, Yu YH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 485, 524, 2008
  28. Rattanasom N, Prasertsri S, Polym. Test, 28, 270, 2009
  29. van der Schuur M, Gaymans RJ, Polymer, 46(18), 6862, 2005
  30. Mostafa A, Abouel-Kasem A, Bayoumi MR, El-Sebaie MG, Mater. Des., 30, 1561, 2009
  31. Mitra S, Naskar K, Bhowmick A, in Thermal analysis of rubbers and rubbery materials, Choudhury NR, De PP, Dutta NK, Eds., Smithers Rapra Technology (2010).
  32. Heidarian J, Hassan A, Compos. Pt. B, 58, 166, 2014
  33. Sideridou ID, Vouvoudi EC, Adamidou EA, Dent. Mater., 31, 154, 2015
  34. Ha H, Ha K, Kim S, Carbon, 48, 1939, 2010
  35. Allaoui A, Bai S, Cheng HM, Bai JB, Compos. Sci. Technol., 62, 1993, 2002