Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 1075-1079, 2016
Facile synthesis of bimetallic Ni-Cu nanoparticles using liquid phase plasma method
A liquid phase plasma (LPP) process was used to synthesize of Ni-Cu bimetallic particles in aqueous solution. The bimetallic particles were well separated, and the particle size increased with increasing LPP process duration, causing these bimetallic particles to be well separated as the particle size increased when the LPP process time increased. The earliest stages of LPP formed dendrite-shaped nanoparticles, while spherical particles were generated in the later stages. While spherical Ni-Cu bimetallic nanoparticles were mostly observed in the initial stage, flower-like shaped Ni-Cu bimetallic nanoparticles were mostly observed after longer durations of plasma treatment. The solution pH decreased with increasing LPP process time.
[References]
  1. Aiello R, Fiscus JE, zur Loye HC, Amiridis MD, Appl. Catal. A: Gen., 192(2), 227, 2000
  2. Bera P, Aruna ST, Patil KC, Hegde MS, J. Catal., 186(1), 36, 1999
  3. Hibino T, Hashimoto A, Inoue T, Tokuno JI, Yoshida SI, Sano M, Science, 288, 2031, 2000
  4. Khodashenas B, Ghorbani HR, Korean J. Chem. Eng., 31(7), 1105, 2014
  5. Park SD, Vohs JM, Gorte RJ, Nature, 404(6775), 265, 2000
  6. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Allahyari S, Korean J. Chem. Eng., 31(9), 1553, 2014
  7. Feng J, Zhang CP, J. Colloid Interface Sci., 293(2), 414, 2006
  8. Cangiano MD, Carreras AC, Ojeda MW, Ruiz MD, J. Alloy. Compd., 458, 405, 2008
  9. Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE, J. Phys. Chem. C, 115, 2656, 2011
  10. Wang HY, Baker RTK, J. Phys. Chem. B, 108(52), 20273, 2004
  11. De Rogatis L, Montini T, Lorenzut B, Fornasiero P, Energy Environ. Sci., 1, 501, 2008
  12. Huang TJ, Jhao SY, Appl. Catal. A: Gen., 302(2), 325, 2006
  13. Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 300(2), 120, 2006
  14. Li P, Liu J, Nag N, Crozier PA, J. Catal., 262(1), 73, 2009
  15. Yin AY, Wen C, Guo XY, Dai WL, Fan KNA, J. Catal., 280(1), 77, 2011
  16. Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Boskovic ZV, Organic Lett., 10, 4279, 2008
  17. Guczi L, Catal. Today, 101(2), 53, 2005
  18. Lee H, Park SH, Jung SC, Yun JJ, Kim SJ, Kim DH, J. Mater. Res., 28, 1105, 2013
  19. Lee H, Park SH, Kim SJ, Park YK, Kim BH, Jung SC, Microelectron. Eng., 126, 153, 2014
  20. Lee DJ, Kim SJ, Lee J, Lee H, Kim HG, Jung SC, Sci. Adv. Mater., 6, 1599, 2014
  21. Lee H, Chung M, Ahn HG, Kim SJ, Park YK, Jung SC, Int. J. Precision Engineering and Manufacturing, 16, 1305, 2015
  22. Lee H, Park SH, Seo SG, Kim SJ, Kim SC, Park YK, Jung SC, Current Nanoscience, 10, 7, 2014
  23. Sansonetti JE, Martin WC, J. Phys. Chem. Ref Data, 34, 1559, 2005
  24. Litzen U, Brault JW, Thorne AP, Physica. Scripta, 47, 628, 1993
  25. Pootawang P, Saito N, Takai O, Thin Solid Films, 519(20), 7030, 2011
  26. Potocky S, Saito N, Takai O, Thin Solid Films, 518(3), 918, 2009
  27. Saito N, Hieda J, Takai O, Thin Solid Films, 518(3), 912, 2009
  28. Baroch P, Anita V, Saito N, Takai O, J. Electrost., 66, 294, 2008
  29. Sun B, Sato M, Harano A, Clements JS, J. Electrost., 43, 115, 1998
  30. Guan J, Liu L, Xu L, Sun Z, Zhang Y, CrystEngComm, 13, 2636, 2011
  31. Takai O, Pure Appl. Chem., 80, 2003, 2008
  32. Tsuji M, Miyamae N, Hashimoto M, Nishio M, Hikino S, Ishigami N, Tanaka I, Colloids Surf. A: Physicochem. Eng. Asp., 302, 587, 2008
  33. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, Liz-Marzan LM, J. Phys. Chem. B, 109(30), 14257, 2005