Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 1008-1013, 2016
Regeneration mechanism of CeO2-TiO2 sorbents for elemental mercury capture from syngas
The characteristics of mercury desorption on spent CeO2-TiO2 (CeTi) sorbents were investigated to improve the cyclic regeneration removal activity. Mercury was significantly released in the form of elemental mercury at temperatures ranging from 250 to 280 oC. Mercury desorption had a significant correlation with regeneration temperature, but was independent of the heating rate and regeneration conditions. The optimal regeneration temperature was 500 oC. The CeTi sorbents could be easily restored by simple heating and exhibited superior activity over several capture-regeneration cycles. The amount of released mercury almost equaled the adsorbed mercury on the surface of the CeTi sorbent, indicating that most of the adsorbed mercury was released during the heating process.
[References]
  1. Li HL, Wu CY, Li Y, Zhang JY, Environ. Sci. Technol., 45, 7394, 2011
  2. Wang SX, Zhang L, Zhao B, Meng Y, Hao JM, Energy Fuels, 26(8), 4635, 2012
  3. Sun MY, Hou JA, Cheng GH, Baig SA, Tan LS, Xu XH, Fuel, 125, 66, 2014
  4. Reddy KSK, Shoaibi AA, Srinivasakannan C, J. Ind. Eng. Chem., 20(5), 2969, 2014
  5. Zhou JS, Hou WH, Qi P, Gao X, Luo ZY, Cen KF, Environ. Sci. Pollut. Res., 47, 10056, 2013
  6. Hou WH, Zhou JS, Qi P, Gao X, Luo ZY, Chem. Eng. J., 241, 131, 2014
  7. Liu Y, Kelly D, Yang HQ, Lin C, Kuznicki SM, Xu ZG, Environ. Sci. Technol., 42, 6205, 2008
  8. Rodriguez-Perez J, Lopez-Anton MA, Diaz-Somoano M, Garcia R, Martinez-Tarazona MR, J. Hazard. Mater., 260, 869, 2013
  9. Dong J, Xu ZH, Kuznicki SM, Environ. Sci. Technol., 43, 3266, 2009
  10. Ozaki M, Uddin MA, Sasaoka E, Wu SJ, Fuel, 87(17-18), 3610, 2008
  11. Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, Tan Y, Luo DQ, Energy Fuels, 26(4), 2082, 2012
  12. Tan ZQ, Xiang J, Su S, Zeng HC, Zhou CS, Sun LS, Hu S, Qiu JR, J. Hazard. Mater., 239, 160, 2012
  13. Scala F, Anacleria C, Cimino S, Fuel, 108, 13, 2013
  14. Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, Chem. Eng. J., 219, 319, 2013
  15. Li P, Xin Y, Li Q, Wang ZP, Zhang ZL, Zheng LR, Environ. Sci. Technol., 46, 9600, 2012
  16. Liu CX, Chen L, Li JH, Ma L, Arandiyan H, Du Y, Xu JY, Hao JM, Environ. Sci. Technol., 46, 6182, 2012
  17. Xie JK, Qu Z, Yan NQ, Yang SJ, Chen WM, Hu LG, Huang WJ, Liu P, J. Hazard. Mater., 261, 206, 2013
  18. Chen LA, Li JH, Ge MF, Zhu RH, Catal. Today, 153(3-4), 77, 2010
  19. Xu WQ, He H, Yu YB, J. Phys. Chem. C, 113, 4426, 2009
  20. Zhang XN, Li CT, Zhao LK, Zhang J, Zeng GM, Xie YE, Yu ME, Appl. Surf. Sci., 343, 392, 2015
  21. Zhao LF, Li CT, Zhang J, Zhang XN, Zhan FM, Ma JF, Xie YE, Zeng GM, Fuel, 153, 361, 2015
  22. Wang PY, Su S, Xiang J, You HW, Cao F, Sun LS, Hu S, Zhang Y, Chemosphere, 101, 49, 2014
  23. Xu WQ, Wang HR, Zhou X, Zhu TY, Chem. Eng. J., 243, 380, 2014
  24. Zhou X, Xu WQ, Wang HR, Tong L, Qi H, Zhu TY, Chem. Eng. J., 254, 82, 2014
  25. Zhao B, Liu XW, Zhou ZJ, Shao HZ, Wang C, Si JP, Xu MH, Chem. Eng. J., 253, 508, 2014