Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 986-996, 2016
Analysis of thermophysical property data of HIx components for I2 crystallizer design in sulfur-iodine process to produce hydrogen
I2 crystallization could be a technical option in HI decomposition section of SI thermochemical water splitting process to increase process efficiency. Design of a crystallizer requires experimental data as well as corresponding equations for thermophysical properties of HIx solution, which is a named ternary solution of H2O, HI, and I2. However, so far, there are no available analyses on them. We collected experimental data and corresponding equations with temperature parameters and compared the equations with the data to analyze their accuracy and credibility. Thermal conductivity was updated in this work while keeping a structure of a corresponding equation. Relative deviations were estimated for liquid density, thermal conductivity, viscosity, and heat capacity and summarized with temperature for H2O, HI, and I2. Solution density and viscosity of binary H2O-HI solution were also analyzed with an empirical equation under a limited condition and with predictable methods exhibiting satisfactory consistency.
[References]
  1. Shin YJ, Kim JH, Chang J, Park WS, Park J, Nuclear hydrogen production project in Korea. In: Nuclear production of hydrogen, Third Information Exchange Meeting Oarai, Japan 5-7 October 2005, NEA (2006).
  2. Chang JH, Kim YW, Lee KY, Lee YW, Lee WJ, Noh JM, Kim MH, Lim HS, Shin YJ, Bae KK, Jung KD, Nucl. Eng. Technol., 39, 111, 2007
  3. Basile A, Iulianelli A, Ed., Advances in hydrogen production, storage and distribution, Woodhead Publishing (2014).
  4. IAEA, Proc. Non-electrical applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications, IAEA-CN-152 (2009).
  5. Kang KS, Kim CH, Cho WC, Jeong SU, Park CS, Bae KK, Nucl. Eng. Des., 256, 67, 2013
  6. Nguyen TDB, Gho YK, Cho WC, Kang KS, Jeong SU, Kim CH, Park CS, Bae KK, Appl. Energy, 115, 531, 2014
  7. Russell JL, McCorkle KH, Norman JH, Porter JT II, Roemer TS, Schuster JR, Sharp RS, Proc. 1st WHEC, Miami Beach, Fl., 1-3 March (1976).
  8. Brown LC, Besenbruch GE, Lentsch RD, Schultz KR, Funk JF, Pickard PS, Marshall AC, Showalter Sk, High efficiency generation of hydrogen fuels using nuclear power, GA-A24285 (2003).
  9. Le Duigou A, Borgard JM, Larousse B, Doizi D, Allen R, Ewan BC, Priestman GH, Elder R, Devonshire R, Ramos V, Cerri G, Salvini C, Giovannelli A, De Maria G, Corgnale C, Brutti S, Roeb M, Noglik A, Rietbrock PM, Mohr S, De Oliveira L, Monnerie N, Schmitz M, Int. J. Hydrog. Energy, 32(10-11), 1516, 2007
  10. Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S, Int. J. Hydrog. Energy, 32(4), 489, 2007
  11. Gelbard F, Andazola JC, Naranjo GE, Velasquez CE, Reay AR, High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle, SAND2005-5598 (2005).
  12. Cho WC, Park CS, Kang KS, Kim CH, Bae KK, Nucl. Eng. Des., 239, 501, 2009
  13. Zhang P, Chen SZ, Wang LJ, Xu JM, Int. J. Hydrog. Energy, 35(7), 2883, 2010
  14. Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S, Int. J. Hydrog. Energy, 32(4), 489, 2007
  15. Norman JH, Besenbruch GE, Brown LC, O’Keefe DR, Allen CL, Thermochemical water-splitting cycle, bench-scale investigations, and process engineering, DOE/ET/26225-1 (1982).
  16. Goldstein S, Borgard JM, Vitart X, AAPG Bull., 30, 619, 2005
  17. Kasahara S, Kubo SJ, Onuki K, Nomura M, Int. J. Hydrog. Energy, 29(6), 579, 2004
  18. Shin Y, Lee K, Kim Y, Chang J, Cho W, Bae K, Int. J. Hydrog. Energy, 37(21), 16604, 2012
  19. Yaws CL, Thermophysical properties of chemicals and hydrocarbons, 1st Ed., William Andrew (2008).
  20. Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquids, 5th Ed. McGraw-Hill (2000).
  21. Lide DR, CRC handbook of chemistry and physics, 87th Ed. CRC Press (2006).
  22. Green DW, Perry RH, Perry’s chemical engineers’ handbook, 8th Ed. McGraw-Hill (2007).
  23. Mathias PM, Modeling the sulfur iodine cycle, Aspen building blocks and simulation models, Report to General Atomics and Sandia National Laboratory (2002).
  24. Wang P, Anderko A, Springer RD, Young RD, J. Mol. Liq., 125, 37, 2006
  25. Annesini MC, Gironi F, Lanchi M, Marrelli L, Maschietti M, Proc. ICheaP-8, Ischia, Italy, 24-27 June (2007).
  26. Hadj-Kali MK, Gerbaud V, Borgard JM, Baudouin O, Floquet P, Joulia X, Carles P, Int. J. Hydrog. Energy, 34(4), 1696, 2009
  27. Murphy JE, O'Connell JP, Fluid Phase Equilib., 288(1-2), 99, 2010
  28. Kasahara S, Appendix A: Chemical, thermodynamic, and transport properties of pure compounds and solutions, in Yan XL, Hino R, Ed., Nuclear Hydrogen Production Handbook, CRC Press, 801 (2011).
  29. Wikipedia, en.wikipedia.org/wiki/Hydrogen_iodide (Accessed June of 2015).
  30. Material Safety Data Sheet, www.msds.com (Accessed June of 2015).
  31. Patnaik P, Handbook of inorganic chemicals, McGraw-Hill (2003).
  32. KDB (Korea Thermophysical Properties Data Bank), www.cheric.org/research/kdb/ (Accessed June of 2015).
  33. NIST Chemistry Webbook, webbook.nist.gov (Accessed June of 2015).
  34. Giauque WF, Wiebe R, J. Am. Chem. Soc., 51, 1441, 1929
  35. Kubo S, Yoshino K, Takemoto J, Kasahara S, Imai Y, Onuki K, Density of Bunsen reaction solution and viscosity of polyhydriodic acid, JAEA-Technology, 2012-037 (2013). [In Japanese].
  36. Nishikata E, Ishii T, Ohta T, J. Chem. Eng. Data, 26, 254, 1981
  37. Herrington TM, PethyBridge AD, Roffey MG, J. Chem. Eng. Data, 30, 264, 1985