Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 934-944, 2016
Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation
Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 oC, low melting point of 218-220 oC comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.
[References]
  1. Kim KS, Demberelnyamba ND, Yeon SW, Choi S, Cha JH, Lee H, Korean J. Chem. Eng., 22(5), 717, 2005
  2. Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678, 2015
  3. Moon YH, Lee SM, Ha SH, Koo YM, Korean J. Chem. Eng., 23(2), 247, 2006
  4. Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ, Korean J. Chem. Eng., 24(6), 1089, 2007
  5. Antonietti M, Kuang DB, Smarsly B, Yong Z, Angew. Chem.-Int. Edit., 43, 4988, 2004
  6. Suh WH, Suh YH, Stucky GD, Nano Today, 4(1), 27, 2009
  7. Dahl JA, Maddux BLS, Hutchison JE, Chem. Rev., 107(6), 2228, 2007
  8. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, J. Am. Chem. Soc., 124(16), 4228, 2002
  9. Li Z, Luan Y, Mu T, Chen G, Chem. Commun., 10, 1258, 2009
  10. Endres F, Bukowski M, Hempelmann R, Natter H, Angew. Chem.-Int. Edit., 42, 3428, 2003
  11. Shafiu S, Unal B, Baykal A, J. Inorg. Organomet. Polym., 23, 1335, 2013
  12. Baykal A, Gunay M, Toprak MS, Sozeri H, Mater. Res. Bull., 48(2), 378, 2013
  13. Jagminas A, Gailiute I, Niaura G, Giraitis R, Chemija., 16, 15, 2005
  14. Cao XB, Xie Y, Zhang SY, Li FQ, Adv. Mater., 16(7), 649, 2004
  15. Zhang J, Wang H, Yan X, Zhang L, Life Sci., 76, 1099, 2005
  16. Gates B, Mayers B, Cattle B, Xia YN, Adv. Funct. Mater., 12(3), 219, 2002
  17. Smith TW, Cheatham RA, Macromolecules, 13, 1203, 1980
  18. Son DH, Hughes SM, Yin Y, Alivisatos AP, Science, 306, 1009, 2004
  19. Camargo PHC, Lee YH, Jeong U, Zou ZQ, Xia YN, Langmuir, 23(6), 2985, 2007
  20. Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN, Mater. Res. Bull., 45(6), 668, 2010
  21. Meenatchi B, Renuga V, Int. J. Adv. Res., 2, 1107, 2014
  22. Antonietti M, Kuang D, Smarsly B, Zhou Y, Angew. Chem.-Int. Edit., 43, 4988, 2004
  23. Sze SM, Physics of semiconductor devices (2nd Ed.), Wiley, Delhi (1981).
  24. Ludolph B, Malik MA, Chem. Commun., 17, 1849, 1998
  25. Eastman JA, Thompson LJ, Kestel BJ, Phys. Rev. B, 48, 84, 1993
  26. Ingole AR, Thakare SR, Khati NT, Wankhade AV, Burghate DK, Chalcogenide Lett., 7, 485, 2010