Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 885-892, 2016
Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation
The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa1 and pKa2 of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa2. At a low pH, below pKa1, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.
[References]
  1. Fenton HJH, J. Chem. Soc.-Dalton Trans., 65, 899, 1984
  2. Mitsika EE, Christophoridis C, Fytianos K, Chemosphere, 93, 1818, 2013
  3. Laat JD, Gallard H, Environ. Sci. Technol., 33, 2726, 1999
  4. Lin SS, Gurol MD, Environ. Sci. Technol., 32, 1417, 1998
  5. Haber F, Weiss J, Proc. Roy. Soc. London, Ser. A., 147, 332, 1934
  6. de Luis A, Lombrana JI, Varona F, Menendez A, Korean J. Chem. Eng., 26(1), 48, 2009
  7. Kim HS, Lee WS, Ahn CY, Kim BH, Kim JE, Oh HM, Korean J. Chem. Eng., 27(6), 1750, 2010
  8. Zhang J, Chen S, Zhang Y, Quan X, Zhao HM, Zhang YB, J. Hazard. Mater., 274, 198, 2014
  9. Cortez S, Teixeira P, Oliveira R, Mota M, J. Environ. Manage., 92, 749, 2011
  10. Flotron V, Delteil C, Padellec Y, Camel V, Chemosphere, 59, 1427, 2005
  11. Jeon BC, Nam SY, Kim YK, Environ. Eng. Res., 19, 9, 2014
  12. Kwon BG, Kim JO, Kwon JK, Environ. Eng. Res., 18(1), 29, 2013
  13. Walling C, Goosen A, J. Am. Chem. Soc., 95, 2987, 1973
  14. Prasad KC, Watts RJ, J. Environ. Eng., 123, 11, 1997
  15. Lee JM, Kim JH, Chang YY, Chang YS, J. Hazard. Mater., 163(1), 222, 2009
  16. Matta R, Hanna K, Chiron S, Sci. Total Environ., 385, 242, 2007
  17. Galeano LA, Vicente MA, Gil A, Chem. Eng. J., 178, 146, 2011
  18. Xu J, Xin L, Huang T, Chang K, J. Environ. Sci., 23(11), 1873, 2011
  19. Hinchee RE, Downey DC, Aggarwal PK, J. Hazard. Mater., 27, 287, 1990
  20. Watts RJ, Teel AL, J. Environ. Eng.-ASCE, 131, 612, 2008
  21. Watts RJ, Foget MK, Kong SJ, J. Hazard. Mater., 69, 229, 1999
  22. Watts RJ, Dilly SE, J. Hazard. Mater., 51, 209, 1996
  23. Kwan WP, Voelker BM, Environ. Sci. Technol., 37, 1150, 2003
  24. Baciocchi R, Boni MR, D'Aprile L, J. Hazard. Mater., 107(3), 97, 2004
  25. Baciocchi R, Boni MR, D'Aprile L, J. Hazard. Mater., 96(2-3), 305, 2003
  26. Watts RJ, Finn DD, Cutler JTS, Teel AL, J. Contam. Hydrol., 91, 312, 2007
  27. Gomes A, Fernandes E, Lima JLFC, J. Biochem. Biophys. Methods, 65, 45, 2005
  28. Jung YS, Lim WT, Park JY, Kim YH, Environ. Technol., 30, 183, 2009
  29. Kim JE, Ha TW, Kim YH, J. Soil Groundwater Environ., 18(7), 25, 2013
  30. Flotron V, Delteil C, Padellec Y, Camel V, Chemosphere, 59(10), 1427, 2005
  31. Cao J, Lam KC, Dawson RW, Liu WX, Tao S, Chemosphere, 54, 507, 2004
  32. Jansen B, Nierop GJK, Verstraten MJ, Geoderma, 113, 323, 2003
  33. Christensen BJ, Christensen TH, Water Res., 34(15), 3743, 2000
  34. Laat JD, Gallard H, Environ. Sci. Technol., 33, 2726, 1999
  35. Duckworth OW, Martin ST, Geochim. Cosmochim. Acta, 65(23), 4289, 2001