Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 880-884, 2016
Semi-transparent thin film solar cells by a solution process
Easily processed, low cost, and highly efficient solar cells are desirable for photovoltaic conversion of solar energy to electricity. We present the fabrication of precursor solution processed CuInGaS2 (CIGS) thin film solar cells on transparent indium tin oxide (ITO) substrates. The CIGS absorber film was prepared by a spin-coating method, followed by two successive heat treatment processes. The first annealing process was on a hot plate at 300 oC for 30 min in air to remove carbon impurities in the film; this was followed by a sulfurization process at 500 oC in an H2S(1%)/Ar environment to form a polycrystalline CIGS film. The absorber film with an optical band-gap of 1.52 eV and a thickness of about 1.1 μm was successfully synthesized. Because of the usage of a transparent glass substrate, a bifacial CIGS thin film device could be achieved; its power conversion efficiency was measured to be 6.64% and 0.96% for front and rear illumination, respectively, under standard irradiation conditions.
[References]
  1. Jelle BP, Breivik C, Energy Procedia, 20, 68, 2012
  2. Baetens R, Jelle BP, Gustavsen A, Sol. Energy Mater. Sol. Cells, 94(2), 87, 2010
  3. Hollingsworth JA, Banger KK, Jin MHC, Harris JD, Cowen JE, Bohannan EW, Switzer JA, Buhro W, Hepp AF, Thin Solid Films, 431-432, 63, 2003
  4. Green M, SOLAR CELLS: Operating Principles, Technology and System Applications, Prentice-Hall New Jersey, USA (1982).
  5. Siebentritt S, Thin Solid Films, 403-404, 1, 2002
  6. Kwon HK, Lee KT, Hur K, Moon SH, Quasim MM, Wilkinson TD, Han JY, Ko HD, Han IK, Park B, Min BK, Ju BK, Morris SM, Friend RH, Ko DH, Adv. E, 5, 140134, 2015
  7. Moon SH, Park SJ, Hwang YJ, Lee DK, Cho Y, Kim DW, Min BK, Sci. Rep., 4, 4408, 2014
  8. Nakada T, Hirabayashi Y, Tokado T, Ohmori D, Mise T, Sol. Energy, 77(6), 739, 2004
  9. Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner MC, Prog. Photovolt: Res. Appl., 11, 243, 2003
  10. Wang W, Su YW, Chang CH, Sol. Energy Mater. Sol. Cells, 95(9), 2616, 2011
  11. Lee DY, Park S, Kim J, Curr. Appl. Phys., 11(1), S88, 2011
  12. Park MG, Ahn SJ, Yun JH, Gwak JH, Cho A, Ahn SK, Shin KS, Nam DH, Cheong HS, Yoon KH, J. Alloy. Compd., 513, 68, 2012
  13. Cho A, Ahn S, Yun JH, Gwak J, Ahn SK, Shin K, Song H, Yoon KH, Sol. Energy Mater. Sol. Cells, 109, 17, 2013
  14. Li L, Coates N, Moses D, J. Am. Chem. Soc., 132(1), 22, 2010
  15. Park SJ, Cho JW, Lee JK, Shin K, Kim JH, Min BK, Prog. Photovolt: Res. Appl., 22, 122, 2014
  16. Tauc J, Amorphous and Liquid Semiconductors, Plenum Press, New York (1974).
  17. Merdes S, Ras DA, Mainz R, Klenk R, Steiner MCL, Meeder A, Schock HW, Klaer J, Prog. Photovolt: Res. Appl., 21, 88, 2013
  18. Kaigawa R, Neisser A, Klenk R, Lux-Steiner MC, Thin Solid Films, 415(1-2), 266, 2002
  19. Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl AR, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari AN, Nat. Mater., 12(12), 1107, 2013
  20. Gloeckler M, Sites JR, J. Phys. Chem. Solids, 66, 1891, 2005
  21. Frisk C, Bjorkman CP, Olsson J, Szaniawski P, Watjen JT, Fjallstrom V, Salome P, Edoff M, J. Phys. D-Appl. Phys., 47, 485104, 2014
  22. Chu VB, Cho JW, Park SJ, Hwang YJ, Park HK, Do YR, Min BK, Nanotechnology, 25, 125401, 2014