Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 831-837, 2016
Conversion of methanol into light olefins over ZSM-11 catalyst in a circulating fluidized-bed unit
Methanol conversion and the reaction pathway were investigated in a pilot-scale circulating fluidized-bed (CFB) unit over hierarchical ZSM-11 catalyst. Experimental results indicated that ZSM-11 catalyst was highly resistant to external coke due to the formation of mesopores. Elevated temperatures favored the production of propylene and butylene and decreased the yield of ethylene. Additionally, no direct relations were shown between the formation of ethylene and other products under different pressures, suggesting that ethylene was a primary product produced at the initial of the reaction. Methylation-cracking and oligomerization were verified as the main reaction pathway for the formation of C3 + alkenes., Methylation and oligomerization of olefins were dominated under high methanol partial pressure and consequently responsible for the production of higher olefins, while the b-scission of C7= for propene and butylene, and C8 = for butylene were enhanced at low methanol partial pressure.
[References]
  1. Chang CD, Silvestri AJ, J. Catal., 47, 249, 1977
  2. Keil FJ, Microporous Mesoporous Mater., 29, 49, 1999
  3. Hereijgers BPC, Bleken F, Nilsen MH, Svelle S, Lillerud KP, Bjorgen M, Weckhuysen BM, Olsbye U, J. Catal., 264(1), 77, 2009
  4. Zaidi HA, Pant KK, Korean J. Chem. Eng., 27(5), 1404, 2010
  5. Kim HG, Lee KY, Jang HG, Song YS, Seo G, Korean J. Chem. Eng., 27(6), 1773, 2010
  6. StOcker M, Microporous Mesoporous Mater., 29, 3, 1999
  7. Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF, J. Am. Chem. Soc., 124(15), 3844, 2002
  8. Marcus DM, McLachlan KA, Wildman MA, Ehresmann JO, Kletnieks PW, Haw JF, Angew. Chem.-Int. Edit., 45, 3133, 2006
  9. Lesthaeghe D, Speybroeck VV, Marin GB, Waroquier M, Angew. Chem.-Int. Edit., 45, 1714, 2006
  10. Blaszkowski SR, Vansanten RA, J. Am. Chem. Soc., 119(21), 5020, 1997
  11. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M, Ind. Eng. Chem. Res., 46(26), 8832, 2007
  12. Dessau RM, J. Catal., 99, 111, 1986
  13. Dahl IM, Kolboe S, Catal. Lett., 20, 329, 1993
  14. Song WG, Haw JF, Nicholas JB, Heneghan CS, J. Am. Chem. Soc., 122(43), 10726, 2000
  15. Ilias S, Bhan A, J. Catal., 311, 6, 2014
  16. Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U, J. Catal., 249(2), 195, 2007
  17. Ilias S, Bhan A, J. Catal., 290, 186, 2012
  18. Yu Q, Cui C, Zhang Q, Chen J, Li Y, Sun J, Li C, Cui Q, Yang C, Shan H, J. Energy Chem., 22, 761, 2013
  19. Li C, Yu Q, Chen J, CN Patent, ZL 201210003750.5 (2012).
  20. Gu Y, Cui N, Yu Q, Li C, Cui Q, Appl. Catal. A: Gen., 429-430, 9, 2012
  21. Yu Q, Meng X, Liu J, Li C, Cui Q, Microporous Mesoporous Mater., 181, 192, 2013
  22. Yu Q, Zhang Q, Liu J, Li C, Cui Q, CrystEngComm, 15, 7680, 2013
  23. Yu Q, Li Y, Meng X, Cui Q, Li C, Mater. Lett., 124, 204, 2014
  24. Yu Q, Chen J, Zhang Q, Li C, Cui Q, Mater. Lett., 120, 97, 2014
  25. Zhang L, Liu HJ, Li XJ, Xie SJ, Wang YZ, Xin WJ, Liu SL, Xu LY, Fuel Process. Technol., 91(5), 449, 2010
  26. Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S, J. Catal., 307, 62, 2013
  27. Kokotailo GT, Chu P, Lawton SL, Meier WM, Nature, 275, 119, 1978
  28. Janssens TVW, J. Catal., 264(2), 130, 2009
  29. Dehertog WJH, Froment GF, Appl. Catal., 71, 153, 1991
  30. Wu WZ, Guo WY, Xiao WD, Luo M, Fuel Process. Technol., 108, 19, 2013
  31. Chang CD, Chu CTW, Socha RF, J. Catal., 86, 289, 1984
  32. Van Rensburg LJ, Hunter R, Hutchings GJ, Appl. Catal., 42, 29, 1988
  33. Chang CD, Lang WH, Smith RL, J. Catal., 56, 169, 1979
  34. Teketel S, Olsbye U, Lillerud KP, Beato P, Svelle S, Microporous Mesoporous Mater., 136, 33, 2010