Issue
Korean Journal of Chemical Engineering,
Vol.32, No.12, 2542-2549, 2015
Effects of angle on the transport velocity in an inclined fluidized-bed
The transport velocity (utri) in an inclined fluidized-bed was investigated by varying the bed angle relative to the horizontal plane (0o-90o), the particle diameter (0.021-0.925mm), and density (1,272-4,503 kg/m3). This study employed the emptying time method to determine the transport velocity. The transport velocity for the vertical fluidized-bed (utr90) was revealed to increase appreciably with the aspect ratio of the fluidized-bed. The transport velocity decreased as the bed angle increased. The ratio of the transport velocity to that for the vertical bed (utri/utr90) decreased with an increase in either the bed angle or the ratio of the particle diameter (dp) to the criticalparticle diameter (dp *), i.e., the maximum particle diameter at which the sum of the interparticle adhesion forces had a dominant influence on particle entrainment. Correlations for the transport velocity according to the bed angle relative to the horizontal plane were proposed successfully, based on the experimental data.
[References]
  1. Youn PS, Choi JH, Korean Chem. Eng. Res., 52(1), 81, 2014
  2. Kunii D, Levenspiel O, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, Boston (1991).
  3. Yerushalmi J, Cankurt NT, Powder Technol., 24, 187, 1979
  4. Li Y, Kwauk M, in Fluidization, Grace JR, Matsen JM, Eds., Plenum Press, New York, 537 (1980).
  5. Avidan AA, Yerushalmi J, Powder Technol., 32, 223, 1982
  6. Shin BC, Koh YB, Kim SD, Korean Chem. Eng. Res., 20, 253, 1984
  7. Han GY, Lee GS, Kim SD, Korean J. Chem. Eng., 2(2), 141, 1985
  8. Horio M, Ishii H, Nishimuro M, Powder Technol., 70, 229, 1992
  9. Chesonis DC, Klinzing GE, Shaah YT, Dassori CG, Ind. Eng. Chem. Res., 29, 1792, 1990
  10. Lee GS, Kim SD, Powder Technol., 62, 207, 1990
  11. Perales JF, Coll T, Llop MF, Puigjaner L, Arnaldos J, Casal J, in Circulating Fluidized Bed Technology III, Basu P, Horio M, Hasatani M, Eds., Pergamon Press, New York, 73 (1991).
  12. Ishii H, Horio M, Adv. Powder Technol., 2, 25, 1991
  13. Hirama T, Takeuchi H, Chiba T, Powder Technol., 70, 215, 1992
  14. Adanez J, de Diego LF, Gayan P, Powder Technol., 77, 61, 1993
  15. Namkung W, Kim SW, Kim SD, Chem. Eng. J., 72(3), 245, 1999
  16. Smolders K, Baeyens J, Powder Technol., 119(2-3), 269, 2001
  17. Balasubramanian N, Srinivasakannan C, Basha CA, Adv. Powder Technol., 16(3), 247, 2005
  18. Bi HT, Fan LS, AIChE J., 38, 297, 1992
  19. Bi HT, Grace JR, Int. J. Multiph. Flow, 21(6), 1229, 1995
  20. Du B, Warsito W, Fan LS, Ind. Eng. Chem. Res., 45(15), 5384, 2006
  21. Geldart D, Powder Technol., 7, 285, 1973
  22. Yang WC, in Handbook of Fluidization and Fluid-Particle Systems, Yang WC, Eds., Marcel Dekker, New York, Chapter 1, 26 (2003).
  23. Kang SH, Powder Technology, Hee Joong Dang, Seoul, Korea, 122 (1995).
  24. Haider A, Levenspiel O, Powder Technol., 58, 63, 1989
  25. Ma XX, Kato K, Powder Technol., 95(2), 93, 1998
  26. Li JL, Kato K, Powder Technol., 118(3), 209, 2001