Issue
Korean Journal of Chemical Engineering,
Vol.32, No.12, 2429-2433, 2015
Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting
Photocatalysts with a small band gap energy have received a great deal of interest due their high solar conversion efficiencies. Cuprous oxide (Cu2O) has attracted attention because of its small bandgap energy, a direct bandgap structure, its suitable band structure for water splitting, high absorption coefficient, non-toxicity, and its large abundance. However, it has poor stability due to the fickle oxidation states of copper. To enhance the stability and the production rate of hydrogen and oxygen, a TiIrOX overlayer was successfully formed on the Cu2O under various synthesis conditions. The composition and oxidation state of the Ir species in the overlayer were optimized through the control of the Ir precursor and the amount of water. The Ir/Ti precursor molar ratio was linearly related to the surface Ir/Ti molar ratio. The addition of water converted the Ir precursor to IrO2. The thickness of the overlayer was controlled by differing the synthesis times of the coating. Then, the largest amounts of hydrogen and oxygen were produced through the optimization of the TiIrOX overlayer with a higher IrO2 fraction and a thicker overlayer.
[References]
  1. Abe R, J. Photochem. Photobiol. C-Photochem. Rev., 11, 179, 2010
  2. Maeda K, J. Photochem. Photobiol. C-C-Photochem. Rev., 12, 237, 2011
  3. Fujishima A, Honda K, Nature, 238, 37, 1972
  4. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503, 2010
  5. Hung WH, Chien TM, Tseng CM, J. Phys. Chem. C, 118, 12676, 2014
  6. Kato H, Asakura K, Kudo A, J. Am. Chem. Soc., 125(10), 3082, 2003
  7. Yamaguti K, Sato S, J. Chem. Soc.-Faraday Trans., 81, 1237, 1985
  8. Schrauzer GN, Guth TD, J. Am. Chem. Soc., 99, 7189, 1977
  9. Takata T, Domen K, J. Phys. Chem. C, 113, 19386, 2009
  10. Kim A, Hwang DW, Bae SW, Kim YG, Lee JS, Korean J. Chem. Eng., 18(6), 941, 2001
  11. Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT, J. Phys. Chem. B, 108(19), 6004, 2004
  12. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115, 2004
  13. Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253, 2009
  14. Kalyanasundaram K, Borgarello E, Duonghong D, Gratzel M, Angew. Chem.-Int. Edit., 20, 987, 1981
  15. Matsumoto H, Sakata T, Mori H, Yoneyama H, J. Phys. Chem., 100(32), 13781, 1996
  16. Hong E, Kim JH, Yu S, Kim JH, Korean J. Chem. Eng., 28(8), 1684, 2011
  17. Fu HB, Xu TG, Zhu SB, Zhu YF, Environ. Sci. Technol., 42, 8064, 2008
  18. Ma LL, Sun HZ, Zhang YG, Lin YL, Li JL, Yu KWY, Yu Y, Tan M, Wang JB, Nanotechnology, 19, 2008
  19. Nie XL, Wei SH, Zhang SB, Phys. Rev. B, 65, 2002
  20. Jiang Y, Yuan HK, Chen H, Phys. Chem. Chem. Phys., 17, 630, 2015
  21. Yan XG, Xu L, Huang WQ, Huang GF, Yang ZM, Zhan SQ, Long JP, Mater. Sci. Semicond. Process, 23, 34, 2014
  22. de Jongh PE, Vanmaekelbergh D, Kelly JJ, J. Electrochem. Soc., 147(2), 486, 2000
  23. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K, Chem. Commun., 357, 1998
  24. Pourbaix M, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, Texas (1974).
  25. Kakuta S, Abe T, Electrochem. Solid State Lett., 12(3), P1, 2009
  26. Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Gratzel M, Energy Environ. Sci., 5, 8673, 2012
  27. Wang CM, Wang CY, J. Nanophoton., 8, 2014
  28. Bendavid LI, Carter EA, J. Phys. Chem. B, 117(49), 15750, 2013
  29. Kwon Y, Soon A, Han H, Lee H, J. Mater. Chem. A, 3, 156, 2015
  30. Liang XD, Gao L, Yang SW, Sun J, Adv. Mater., 21(20), 2068, 2009