Issue
Korean Journal of Chemical Engineering,
Vol.32, No.12, 2406-2411, 2015
Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow
A cross-slot microchannel has been harnessed for a wide range of applications, such as label-free measurements of cell deformability and rheological characterization of complex fluids. This work investigates flow kinematics in a cross-slot microchannel used for the measurements of cell deformability utilizing finite element method (FEM)-based numerical simulation. In a cross-slot microchannel, the cell is stretched near the stagnation of the cross-slot channel, and cell deformation is significantly affected by its trajectory. Two passive methods, inertia- and viscoelasticitybased, which do not rely on any external force such as an electric field, have been applied to focus particles along the channel centerline so that the cell trajectories are unified. However, it is not well understood how the flow kinematics inside the cross-slot channel is altered by the inertial or viscoelastic effect when these two methods are employed. This work demonstrates that the flow kinematics such as the distributions of flow type and strain rate is notably changed with an increase in the Reynolds number when an inertia-based method is employed. On the other hand, flow kinematics does not significantly deviate from that of an inertia-less Newtonian fluid irrespective of the Weissenberg numbers when a viscoelasticity-based method is used. The current work will be helpful for the design and operation of a cross-slot microdevice for measuring cell deformability.
[References]
  1. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J, Biophys. J., 81, 767, 2001
  2. Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A, 109, 7630, 2012
  3. Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM, Anal. Chem., 84, 10471, 2012
  4. Lee SS, Yim Y, Ahn KH, Lee SJ, Biomed. Microdevices, 11, 1021, 2009
  5. Di Carlo D, J. Lab. Autom., 17, 32, 2012
  6. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T, Acta Biomater., 1, 15, 2005
  7. Chien S, Annu. Rev. Physiol., 49, 177, 1987
  8. Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, Mislick K, Adams RP, Rao J, Di Carlo D, Sci. Transl. Med., 5, 212ra1, 2013
  9. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A., 109, 7630, 2012
  10. Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S, Pagliara S, Ekpenyong A, Jacobi A, Wobus M, Topfner N, Keyser UF, Mansfeld J, Fischer-Friedrich E, Guck J, Nat. Meth., 12, 199, 2015
  11. Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ, Lab Chip, 10, 1543, 2010
  12. Tanner RI, Huilgol RR, Rheol. Acta, 14, 959, 1975
  13. Smith DE, Babcock HP, Chu S, Science, 283(5408), 1724, 1999
  14. Kim JM, Doyle PS, Lab Chip, 7, 213, 2007
  15. Segre G, Silberberg A, Nature, 189, 209, 1961
  16. Karnis A, Mason SG, Goldsmith HL, Nature, 200, 159, 1963
  17. Di Carlo D, Irimia D, Tompkins RG, Toner M, Proc. Natl. Acad. Sci. U.S.A., 104, 18892, 2007
  18. Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501, 2007
  19. Yang S, Lee SS, Ahn SW, Kang K, Shim W, Lee G, Hyun K, Kim JM, Soft Matter, 8, 5011, 2012
  20. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266, 2011
  21. Kim JY, Ahn S, Lee SS, Kim JM, Lab Chip, 12, 2807, 2012
  22. Karimi A, Yazdi S, Ardekani AM, Biomicrofluidics, 7, 021501, 2013
  23. Xuan XC, Zhu JJ, Church C, Microfluid. Nanofluid., 9, 1, 2010
  24. Di Carlo D, Lab Chip, 9, 3038, 2009
  25. Amini H, Lee W, Di Carlo D, Lab Chip, 14, 2739, 2014
  26. Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL, Lab Chip, 13, 2802, 2013
  27. D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL, Lab Chip, 12, 1638, 2012
  28. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM, Nat. Commun., 4, 2567, 2013
  29. Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, Wiley Interscience, New York (1987).
  30. Puangkird B, Belblidia F, Webster MF, J. Non-Newton. Fluid Mech., 162(1-3), 1, 2009
  31. Haward SJ, Oliveira MSN, Alves MA, McKinley GH, Phys. Rev. Lett., 109, 128301, 2012
  32. Poole PJ, Alves MA, Oliveira PJ, Phys. Rev. Lett., 99, 164503, 2007
  33. Cha S, Kang K, You JB, Im SG, Kim Y, Kim JM, Rheol. Acta, 53(12), 927, 2014
  34. Kim JM, Kim C, Ahn KH, Lee SJ, J. Non-Cryst. Solids, 123, 161, 2004
  35. Liu AW, Bornside DE, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 77(3), 153, 1998
  36. Brooks AN, Hughes TJR, Comput. Method. Appl. M., 32, 199, 1982
  37. Owens RG, Phillips TN, Computational Rheology, World Scientific Publishing Co., Singapore (2002).
  38. YURAN F, CROCHET MJ, J. Non-Newton. Fluid Mech., 57(2-3), 283, 1995
  39. Tanyeri M, Johnson-Chavarria EM, Schroeder CM, Appl. Phys. Lett., 96, 224101, 2010
  40. Lee JS, Dylla-Spears R, Teclemariam NP, Muller SJ, Appl. Phys. Lett., 90, 074103, 2007