Issue
Korean Journal of Chemical Engineering,
Vol.32, No.12, 2384-2393, 2015
Microscopic flow characteristics in fluidized bed of cylinder-shaped particles
IBM (Immersed boundary method) and DEM (Discrete element method) coupling method were used to simulate the flow of cylinder-shaped particles in a fluidized bed. The greatest advantage of IBM-DEM is that it can reveal the microscopic characteristics of dense-phase gas-particle flow in Cartesian grids. Large cylinder-shaped particles are very difficult to fluidize, and slugging flow can be observed even if the static bed height is low. The gas flow field around the particle in fluidized bed is analyzed, and the formation and development of vortex behind the particle is affected obviously by the neighboring particles. Particle trajectory is obtained, and the effect of gas phase on particle rotation becomes active as particle size increases. Compared with the experimental results, the gas-solid force in simulation results is higher. This calculation error may be reduced by decreasing the grid size.
[References]
  1. Tsuji Y, Kawaguchi T, Tanaka T, Powder Technol., 77, 79, 1993
  2. Cundall PA, Strack ODL, Geotechnique, 29, 47, 1979
  3. Zhu HP, Zhou ZY, Yang RY, Yu AB, Chem. Eng. Sci., 63(23), 5728, 2008
  4. Zhou HS, Flamant G, Gauthier D, Chem. Eng. Sci., 59(20), 4193, 2004
  5. Yang SL, Luo K, Fang MM, Zhang K, Fan JR, Chem. Eng. J., 236, 158, 2014
  6. Wang CH, Zhong ZP, Wang XY, Alting SA, Can. J. Chem. Eng., 92(8), 1488, 2014
  7. Nakamura H, Watano S, Powder Technol., 171(2), 106, 2007
  8. Kuwagi K, Utsunomiya H, Shimoyam Y, Hirano H, Takami T, The 13th international conference on fluidization-new paradigm in fluidization engineering (2010).
  9. van der Hoef MA, van Sint Annaland M, Deen NG, Kuipers JAM, Annu. Rev. Fluid Mech., 40, 47, 2008
  10. Ma JS, Ge W, Xiong QG, Wang JW, Li JH, Chem. Eng. Sci., 64(1), 43, 2009
  11. Wang LM, Zhou GF, Wang XW, Xiong QG, Ge W, Particuology, 8, 379, 2010
  12. Peskin CS, J. Comput. Phys., 25, 220, 1977
  13. Wang ZL, Fan JR, Luo K, Int. J. Multiph. Flow, 34(3), 283, 2008
  14. Kempe T, Frohlich J, J. Comput. Phys., 231, 3663, 2012
  15. Griffith BE, Luo XY, McQuee DM, Peskin CS, Int. J. Appl. Mech., 1, 137, 2009
  16. Guo Y, Wu CY, Thornton C, AIChE J., 59(4), 1075, 2013
  17. Kajishima T, Takiguchi S, Hamasaki H, Miyaka Y, JSME Int. J., 44, 526, 2001
  18. Tsuji Y, Tanaka T, Ishida T, Powder Technol., 71, 239, 1992
  19. Dziugys A, Peters B, Granular Matter., 3, 231, 2001
  20. Tao H, Zhong WQ, Jin BS, Proceedings of CSEE, 32, 13, 2012
  21. Mindlin RD, J. Appl. Mech., 16, 259, 1949
  22. Karamavruc AI, Clark NN, Chem. Eng. Sci., 52(3), 357, 1997
  23. Tsuji T, Yada H, Yoshikawa K, Tanaka T, 7th International Conference on Multiphase Flow (2010).