Issue
Korean Journal of Chemical Engineering,
Vol.32, No.11, 2335-2341, 2015
Novel perpendicularly cross-rectangular CuO architectures: Controlled synthesis, enhanced photocatalytic activity and catalytic thermal-decomposition of NH4ClO4
Novel perpendicularly cross-rectangular CuO architectures have been successfully fabricated on a large scale by a facile microwave-assisted chemical aqueous route. The as-synthesized CuO products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy. An individual CuO microstructure is mainly assembled by two rectangle-shaped nanosheets with different sizes, which is perpendicularly intersected through the center. A possible formation mechanism of perpendicularly cross-rectangular CuO architectures was proposed based on the comparative experimental results. The prepared CuO nanoarchitectures exhibited excellent photocatalytic activity for the decolorization of Rhodamine B (RhB) under visible light irradiation. Simultaneously, the prepared CuO products, acting as an additive, also showed effective catalytic activity on the thermal decomposition of ammonium perchlorate (NH4ClO4).
[References]
  1. Yan HQ, He RR, Pham J, Yang PD, Adv. Mater., 15(5), 402, 2003
  2. Yuan CZ, Zhang XG, Su LH, Shen LF, J. Mater. Chem., 19, 5772, 2009
  3. Jiang H, Zhao T, Yan CY, Ma J, Li CZ, Nanoscale, 2, 2195, 2010
  4. Hu XL, Yu JC, Gong JM, Li Q, Li GS, Adv. Mater., 19(17), 2324, 2007
  5. Lou XW, Deng D, Lee JY, Archer LA, J. Mater. Chem., 18, 4397, 2008
  6. Wang X, Hu CG, Liu H, Du GJ, He XS, Xi Y, Sens. Actuators B-Chem., 144, 220, 2010
  7. Pillai UR, Deevi S, Appl. Catal. B: Environ., 64(1-2), 146, 2006
  8. Kumar RV, Diamant Y, Gedanken A, Chem. Mater., 12, 2301, 2000
  9. Schon JH, Dorget M, Beuran FC, Zu XZ, Arushanov E, Cavellin CD, Lagues M, Nature, 414, 434, 2001
  10. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547, 2004
  11. Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH, Nanotechnology, 16, 88, 2005
  12. Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171, 2011
  13. Sonia S, Jayram ND, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C, Superlattices Microstruct., 66, 1, 2014
  14. Wang WZ, Zhuang Y, Li L, Mater. Lett., 62, 1724, 2008
  15. Zhang XJ, Wang GF, Liu XM, Wu HQ, Mater. Chem. Phys., 112(3), 726, 2008
  16. Wang XQ, Xi GC, Xiong SL, Liu YK, Xi BJ, Yu WC, Qian YT, J. Cryst. Growth, 7, 930, 2007
  17. Deng CH, Hu HM, Ge XQ, Han CL, Yang BH, J. Nanosci. Nanotechnol., 12, 3150, 2012
  18. Kim MR, Kim SJ, Jang DJ, J. Cryst. Growth, 10, 257, 2010
  19. Krishnan S, Haseeb ASMA, Johan MR, J. Nanopart. Res., 15, 1410, 2013
  20. Hu YY, Huang XT, Wang K, Liu JP, Jiang J, Ding RM, Ji XX, Li X, J. Solid State Chem., 183, 662, 2010
  21. Zou GF, Li H, Zhang DW, Xiong K, Dong C, Qian YT, J. Phys. Chem. B, 110(4), 1632, 2006
  22. Yu YL, Zhang JY, Mater. Lett., 63, 1840, 2009
  23. Chen G, Zhou HF, Ma W, Zhang D, Qiu GZ, Liu XH, Solid State Sci., 13, 2137, 2011
  24. Li JY, Xiong SL, Xi BJ, Li XG, Qian YT, J. Cryst. Growth, 9, 4108, 2009
  25. Zhang WX, Li M, Wang Q, Chen GD, Kong M, Yang ZH, Mann S, Adv. Funct. Mater., 21(18), 3516, 2011
  26. Shi HX, Zhao YX, Li N, Wang K, Hua X, Chen MD, Teng F, Catal. Commun., 47, 7, 2014
  27. Ai ZH, Ho WK, Lee SC, Zhang LZ, Environ. Sci. Technol., 43, 4143, 2009
  28. Deng CH, Tian XB, Mater. Res. Bull., 48, 4344, 2009
  29. Zaman S, Zainelabdin A, Amin G, Nur O, Willander M, J. Phys. Chem. Solids, 73, 1320, 2012
  30. Jacobs PWM, Whitehead HM, Chem. Rev., 69, 551, 1969
  31. Xu YY, Chen DR, Jiao ML, Xue KY, Mater. Res. Bull., 42(9), 1723, 2007
  32. Patil PR, Krishnamurthy VN, Joshi SS, PROPELLANT-EXPLOS-PYROTECH, 33(4), 266, 2008
  33. Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296, 2010
  34. Chen LJ, Li LP, Li GS, J. Alloy. Compd., 464, 532, 2008
  35. Yang C, Xiao F, Wang JD, Su XT, J. Colloid Interface Sci., 435, 34, 2014
  36. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R, Powder Technol., 217, 330, 2012
  37. Yang C, Wang JD, Xiao F, Su XT, Powder Technol., 264, 36, 2014
  38. Boldyrev VV, Thermochim. Acta, 443(1), 1, 2006
  39. Yin JZ, Sheng ZH, Zhang WG, Zhang Y, Zhong H, Li RQ, Jiang ZJ, Wang XF, Mater. Lett., 131, 317, 2014