Issue
Korean Journal of Chemical Engineering,
Vol.32, No.11, 2330-2334, 2015
Simple boron removal from seawater by using polyols as complexing agents: A computational mechanistic study
The complexation of boric acid (B(OH)3), the primary form of aqueous boron at moderate pH, with polyols is proposed and mechanistically studied as an efficient way to improve membrane processes such as reverse osmosis (RO) for removing boron in seawater by increasing the size of aqueous boron compounds. Computational chemistry based on the density functional theory (DFT) was used to manifest the reaction pathways of the complexation of B(OH)3 with various polyols such as glycerol, xylitol, and mannitol. The reaction energies were calculated as .80.6, .98.1, and .87.2 kcal/mol for glycerol, xylitol, and mannitol, respectively, indicating that xylitol is the most thermodynamically favorable for the complexation with B(OH)3. Moreover, the 1 : 2 molar ratio of B(OH)3 to polyol was found to be more favorable than the ratio of 1 : 1 for the complexation. Meanwhile, latest lab-scale actual RO experiments successfully supported our computational prediction that 2 moles of xylitol are the most effective as the complexing agent for 1 mole of B(OH)3 in aqueous solution.
[References]
  1. Tu KL, Nghiem LD, Chivas AR, Sep. Purif. Technol., 75(2), 87, 2010
  2. Shaban HI, Sep. Purif. Methods, 19, 121, 1990
  3. Khawaji AD, Kutubkhanah IK, Wie JM, Desalination, 221(1-3), 47, 2008
  4. Lee KP, Arnot TC, Mattia D, J. Membr. Sci., 370(1-2), 1, 2011
  5. Redondo J, Busch M, De Witte JP, Desalination, 156(1-3), 229, 2003
  6. Sagiv A, Semiat R, J. Membr. Sci., 243(1-2), 79, 2004
  7. WHO, Guidelines for Drinking Water Quality, WHO, Geneva (1998).
  8. Glueckstern P, Priel M, Desalination, 156(1-3), 219, 2003
  9. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P, Water Res., 43, 2317, 2009
  10. Geffen N, Semiat R, Eisen MS, Balazs Y, Katz I, Dosoretz CG, J. Membr. Sci., 286(1-2), 45, 2006
  11. Dydo P, Nems I, Turek M, Sep. Purif. Technol., 89, 171, 2012
  12. Chapelle S, Stella JF, Verchere JF, Tetrahedron, 44, 4469, 1988
  13. Kabay N, Bryjak M, Schlosser S, Kitis M, Avlonitis S, Matejka Z, Al-Mutaz I, Yuksel M, Desalination, 223(1-3), 38, 2008
  14. Mehltretter CL, Wekly FB, Wilham CA, Ind. Eng. Chem. Prod. Res. Dev., 3, 145, 1964
  15. Yasuda S, Yamauchi H, Nippon Kagaku Kaishi, 4, 752, 1987
  16. Gaussian 09W, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT (2004).
  17. Grimme S, J. Comput. Chem., 27, 1787, 2006
  18. Becke AD, J. Chem. Phys., 98, 5648, 1993
  19. Ditchfield R, Herhe WJ, Pople JA, J. Chem. Phys., 54, 724, 1971
  20. Won YS, Korean J. Chem. Eng., 29(10), 1438, 2012
  21. Won YS, Korean J. Chem. Eng., 31(11), 2077, 2014
  22. Li X, Frisch MJ, J. Chem. Theory Comput., 2, 835, 2006
  23. Rayson MS, Altarawneh M, Mackie JC, Kennedy EM, Dlugogorski BZ, J. Phys. Chem. A, 114(7), 2597, 2010
  24. Tomasi J, Mennucci B, Cammi R, Chem. Rev., 105(8), 2999, 2005
  25. Jeong G, Jung JH, Lim JH, Won YS, Lee JK, J. Chem. Eng. Jpn., 47(3), 225, 2014
  26. Park BS, Kim MS, Kim SH, CESE Conference, Malaysia (2014).