Issue
Korean Journal of Chemical Engineering,
Vol.32, No.11, 2285-2289, 2015
Cost-efficient cultivation of Spirulina platensis by chemical absorption of CO2 into medium containing NaOH
Spirulina is one of the promising photosynthetic microorganisms as the source for food, cosmetic, and other value-added products such as phycocyanin. However, its production cost associated with cultivation is expensive because of high concentration of bicarbonate (76wt%) in standard Zarrouk medium for Spirulina. Bicarbonate not only acts as a carbon source but also helps maintaining culture medium in alkaline condition, which is essential for growth of Spirulina. The present study demonstrates that bicarbonate (16.8 g/L) in standard Zarrouk medium was completely replaceable by chemical CO2 absorption using 0.2M NaOH and 154.2 mmol CO2 gas could be absorbed in the form of NaHCO3/Na2CO3 into 1 L medium during the process. This process was incorporated into Spirulina cultivation, which enabled us to reduce the total cost of preparation of Zarrouk medium by 34.3% without sacrificing biomass and pigments production. In addition, another important use of NaOH is achievement of cost-efficient and ecofriendly sanitization of culture medium.
[References]
  1. Belay A, Ota Y, Miyakawa K, Shimamatsu H, J. Appl. Phycol., 5, 235, 1993
  2. White D, Pagarette A, Rooks P, Ali S, J. Appl. Phycol., 25, 153, 2013
  3. Ho SH, Chen CY, Lee DJ, Chang JS, Biotechnol. Adv., 29, 189, 2011
  4. Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403, 2005
  5. Gonzalez-Lopez CV, Fernandez FGA, Fernandez-Sevilla JM, Fernandez JFS, Grima EM, Biotechnol. Bioeng., 109(7), 1637, 2012
  6. Peng Y, Zhao B, Li L, Energy Procedia, 14, 1515, 2012
  7. Yu CH, Huang CH, Tan CS, Aerosol Air Qual. Res., 12, 745, 2012
  8. Moran R, Plant Physiology, 69, 1376, 1982
  9. Patel A, Mishra S, Pawar R, Ghosh PK, Protein Expr. Purif., 40(2), 248, 2005
  10. Ogbonda KH, Aminigo RE, Abu GO, Bioresour. Technol., 98(11), 2207, 2007
  11. Kumari A, Kumar A, Pathak AK, Guria C, J. CO2 Util., 8, 49, 2014
  12. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C, Appl. Therm. Eng., 30, 53, 2010
  13. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2, 9, 2008
  14. Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438, 2009
  15. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M, Chem. Eng. Res. Des., 89(9A), 1446, 2011
  16. Keith DW, Ha-Duong M, Stolaroff JK, Clim. Change, 74, 17, 2006
  17. Spigarelli BP, Kawatra SK, J. CO2 Util., 1, 69, 2013
  18. Pulz O, Gross W, Appl. Microbiol. Biotechnol., 65(6), 635, 2004
  19. Healthcare G, Appl. Note, 18, 1124, 2009