Issue
Korean Journal of Chemical Engineering,
Vol.32, No.11, 2187-2203, 2015
Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave
The effect of wall geometry on the flow and heat transfer in a channel with one lower furrowed and an upper flat wall kept at a uniform temperature is investigated by large eddy simulation. Three channels, one with sinusoidal wavy surface having the ratio (amplitude to wavelength) α/λ=0.05 and the other two with furrowed surface derived from the sinusoidal curve, are considered. The numerical results show that the streamwise vortices center is located near the lower wall and vary along the streamwise on various furrow surfaces. The furrow geometry increases the pressure drag and decreases the friction drag of the furrowed surface compared with that of the smooth surface; consequently, the total drag is increased for the augment of pressure drag. As expected, the heat transfer performance has been improved. Finally, a thermal performance factor is defined to evaluate the performance of the furrowed wall.
[References]
  1. Phan C, Holgate DL, Griffin GJ, Korean J. Chem. Eng., 20(6), 1012, 2003
  2. Sawyers DR, Sen M, Chang HC, Int. J. Heat Mass Transf., 41(22), 3559, 1998
  3. Naphon P, Energy Conv. Manag., 48(5), 1516, 2007
  4. Chang SW, Lees AW, Chou TC, Int. J. Heat Mass Transf., 52(19-20), 4592, 2009
  5. Elshafei EAM, Awad MM, El-Negiry E, Ali AG, Energy, 35(1), 101, 2010
  6. Burns JC, Parks T, J. Fluid Mech., 29, 405, 1967
  7. Goldstein L, Sparrow EM, J. Heat Transf. -Trans. ASME, 99, 187, 1977
  8. Zilker DP, Cook GW, Hanratty TJ, J. Fluid Mech., 82, 29, 1977
  9. Zilker DP, Hanratty TJ, J. Fluid Mech., 90, 257, 1979
  10. Kruse N, Von Rohr PR, Int. J. Heat Mass Transf., 49(19-20), 3514, 2006
  11. Kuhn S, von Rohr PR, Int. J. Heat Fluid Flow, 29, 94, 2008
  12. Maaβ C, Schumann U, In: Hirschel EH(Ed.), Flow simulation with high performance computers, Notes on Numerical Fluid Mechanics, 52, 227 (1996).
  13. Choi HS, Suzuki K, Int. J. Heat Fluid Flow, 26, 681, 2005
  14. Kuhn S, Kenjeres S, von Rohr PR, Int. J. Therm. Sci., 49, 1209, 2010
  15. Wang CC, Chen CK, Int. J. Heat Mass Transf., 45(12), 2587, 2002
  16. Park TS, Sung HJ, Suzuki K, Int. J. Heat Fluid Flow, 24, 29, 2003
  17. Park TS, Choi HS, Suzuki K, Int. J. Heat Mass Transf., 47(10-11), 2403, 2004
  18. Dellil AZ, Azzi A, Jubran BA, Heat Mass Transf., 40, 793, 2004
  19. Yoon HS, El-Samni OA, Huynh AT, Chun HH, Kim HJ, Pham AH, Park IP, Ocean Eng., 36, 697, 2009
  20. Naphon P, Int. Commun. Heat Mass Transf., 36, 942, 2009
  21. Hafez KA, Elsamni OA, Zakaria KY, Alex. Eng. J., 50, 145, 2011
  22. Barboy S, Rashkovan A, Ziskind G, Int. J. Heat Mass Transf., 55(13-14), 3576, 2012
  23. Jimenez J, Moin P, J. Fluid Mech., 225, 213, 1991
  24. Kim J, Moin P, Moser R, J. Fluid Mech., 177, 133, 1987
  25. Lilly DK, Phys. Fluids, 4, 633, 1992
  26. Deardoff JW, J. Fluid Mech., 41, 465, 1970
  27. Kader B, Int. J. Heat Mass Transf., 43, 1541, 1981
  28. Patankar SV, Spalding DB, Int. J. Heat Mass Transf., 15, 1787, 1972
  29. Dean RB, J. Fluid Eng., 100, 215, 1987
  30. Incropera FP, Dewitt DP, Fundam. Heat Mass Transfer, Wiley, New York (1996).
  31. Chong MS, Perry AE, Cantwell BJ, Phys. Fluids A, 2, 765, 1990
  32. Hunt JCR, Wray AAA, Moin P, Proceedings of the summer program of center for turbulence research, United States of America (1988).