Issue
Korean Journal of Chemical Engineering,
Vol.32, No.9, 1918-1923, 2015
New α-Zn2V2O7/carbon nanotube nanocomposite for supercapacitors
This study synthesized α-Zn2V2O7 nanopowders using a hydrothermal approach followed by annealing treatment. The resulting powders were then mixed with multi-walled carbon nanotubes and electrochemically characterized as new nanocomposite electrodes for supercapacitors. The structure and surface morphology of the powders were characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Plus, the capacitive behavior of the composite electrodes was evaluated by cyclic voltammetry and galvanostatic charge-discharge cycles in different molar aqueous KCl solutions. The α-Zn2V2O7/multi-walled carbon nanotube composite electrodes were prepared using three different ratios and screened for their use in supercapacitors. As a result, the α-Zn2V2O7/multi-walled carbon nanotube composite electrode with a 1 : 2 ratio was identified as the best electrode with a specific capacitance value of 44.8 F g-1 in 0.5M KCl. Notwithstanding, all the tested composite electrodes demonstrated an excellent cycle stability and showed a less than 4% change in their specific capacitance values when compared to the initial values.
[References]
  1. Burke A, J. Power Sources, 91(1), 37, 2000
  2. Conway BE, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Kluwer Academic/Plenum Publisher, New York (1999).
  3. Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Jo SM, Kim DY, J. Power Sources, 168(2), 546, 2007
  4. Shan Y, Gao L, Mater. Chem. Phys., 103(2-3), 206, 2007
  5. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM, Chem. Phys. Lett., 376(1-2), 207, 2003
  6. Prasad KR, Miura N, Electrochem. Commun., 6, 1004, 2004
  7. Lee MT, Chang JK, Hsieh YT, Tsai WT, J. Power Sources, 185(2), 1550, 2008
  8. Kim BC, Wallace GG, Yoon YI, Ko JM, Too CO, Synth. Met., 159, 1389, 2009
  9. Wohlfahrt-Mehrens M, Schenk J, Wilde PM, Abdelmula E, Axmann P, Garche J, J. Power Sources, 105(2), 182, 2002
  10. Wang GX, Qu MZ, Yu ZL, Yuan RZ, Mater. Chem. Phys., 105(2-3), 169, 2007
  11. Kalpana D, Omkumar KS, Kumar SS, Renganathan NG, Electrochim. Acta, 52(3), 1309, 2006
  12. Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK, J. Alloy. Compd., 480, 17, 2009
  13. Jayalakshmi M, Palaniappa M, Balasubramanian K, Int. J. Electrochem. Sci., 3, 96, 2008
  14. Lee HY, Goodenough JB, J. Solid State Chem., 148, 81, 1999
  15. Naydenov A, Mehandjiev D, Compt. Rend. Acad. Bulg. Sci., 46, 49, 1993
  16. Bliznakov GM, Mehandjiev DR, Kinet. Catal., 28, 116, 1987
  17. Baricevic AT, Grbic B, Jovanovic D, Angelov S, Mehandjiev D, Marinova C, Stefanov PK, Appl. Catal., 47, 145, 1989
  18. Mehandjiev DR, Dimitrova IP, Compt. Rend. Acad. Bulg. Sci., 42, 71, 1989
  19. Angelov S, Mehandjiev DR, Piperov B, Zarkov V, Baricevic AT, Jovanovic D, Jovanovic Z, Appl. Catal., 16, 431, 1985
  20. Dyakova E, Baricevic AT, Mehandjiev D, Zhecheva E, Grbic B, Kinet. Catal. Lett., 43, 521, 1991
  21. Gopal R, Calvo C, Can. J. Chem., 51, 1004, 1973
  22. Schindler M, Hawthorne FC, J. Solid State Chem., 146, 271, 1999
  23. Zavalij PY, Zhang F, Whittingham MS, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 53, 1738, 1997
  24. Abraham SD, David ST, Bennie RB, Joel C, Seethamahalakshmi M, Adinavven T, Chem. Sci. Transactions, 3(4), 1488, 2014
  25. Jayalakshmi M, Rao MM, Venugopal N, Kim KB, J. Power Sources, 166(2), 578, 2007
  26. Liu XJ, Osaka T, J. Electrochem. Soc., 144(9), 3066, 1997