Issue
Korean Journal of Chemical Engineering,
Vol.32, No.9, 1798-1803, 2015
A two-dimensional analytical model of laminar flame in lycopodium dust particles
A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in twodimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.
[References]
  1. Krazinski JL, Buckius RO, Krier H, Prog. Energy Combust. Sci., 5, 31, 1979
  2. Hertzberg M, Cashdollar KL, Zlochower IA, Symp. (Int.) Combust., 21, 303, 1988
  3. Berlad AL, Ross H, Facca L, Tangirala V, Combust. Flame, 82, 449, 1990
  4. Sun JH, Dobashi R, Hirano T, Symp. (Int.) Combust., 27, 2405, 1998
  5. Proust C, Experimental determination of the maximum flame temperatures and of the laminar burning velocities for some combustible dust-air mixtures, Proceedings of the Fifth International Colloquium on Dust Explosions, Pultusk, Poland (1993).
  6. Shoshin Y, Dreizin E, Combust. Flame, 133(3), 275, 2003
  7. Chen ZH, Fan BC, J. Loss Prev. Process Ind., 18(1), 13, 2005
  8. Goroshin S, Kolbe M, Lee JHS, Symp. (Int.) Combust., 28, 2811, 2000
  9. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 13(6), 449, 2000
  10. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153, 2001
  11. Proust C, J. Loss Prev. Process Ind., 19(1), 89, 2006
  12. Proust C, J. Loss Prev. Process Ind., 19(2-3), 104, 2006
  13. Bidabadi M, Rahbari A, Combust. Explos., 45, 278, 2009
  14. Bidabadi M, Rahbari A, J. Mech. Sci. Technol., 23, 2417, 2009
  15. Bidabadi M, Haghiri A, Rahbari A, Int. J. Therm. Sci., 49, 534, 2010
  16. Bidabadi M, Shakibi A, Rahbari A, J. Taiwan Inst. Chem. Eng., 42, 180, 2011
  17. Bidabadi M, Natanzi AHA, Mostafavi SA, Powder Technol., 217, 69, 2012
  18. Gao W, Mogi T, Sun JH, Yu JL, Dobashi R, Powder Technol., 249, 168, 2013
  19. Jadidi M, Bidabadi M, Hosseini ME, Proc. Inst. Mech. Eng. Part G, 223, 915, 2009
  20. Goroshin S, Bidabadi M, Lee JHS, Combust. Flame, 105, 147, 1996