Issue
Korean Journal of Chemical Engineering,
Vol.32, No.9, 1749-1758, 2015
Instantaneous NO release from ellipsoidal particles during char combustion in a hot gas with fluctuating temperature
We have established the instantaneous governing equations for NO release during char combustion of nonspherical particles theoretically. The instantaneous released NO mass variations, the instantaneous char oxidation reaction rates, and the instantaneous NO reduction reaction rates of char particles were computed numerically under different fluctuation amplitudes of gas temperature, kinetic parameters of char oxidation reaction and NO reduction reaction, and particle aspect ratios. The gas temperature fluctuation results in a faster NO release rate, a faster char oxidation reaction rate, and a faster NO reduction reaction rate during the whole char combustion processes. The activation energy of char oxidation reaction has obvious influence on the NO release and char combustion processes. The kinetic parameters of NO reduction reaction have no contribution to the conversion time. Under the same particle surface area, the conversion rate of char nitrogen to NO increases with the increase in the particle aspect ratio.
[References]
  1. Houshfar E, Wang L, Vaha-Savo N, Brink A, Lovas T, Clean Technol. Environ., 16, 1339, 2014
  2. Zhao K, Jensen AD, Glarborg P, Energy Fuels, 28(7), 4684, 2014
  3. Sami M, Annamalai K, Wooldridge M, Prog. Energy Combust. Sci., 27(2), 171, 2001
  4. Johansson LS, Tullin C, Leckner B, Sjovall P, Biomass Bioenerg., 25(4), 435, 2003
  5. Hedman PO, Warren DL, Combust. Flame, 100, 185, 1995
  6. Zhang HT, Zhang J, Fuel, 89(5), 1177, 2010
  7. Shang Q, Zhang J, Zhou LX, Fuel, 84(16), 2071, 2005
  8. Zhang HT, Zhang J, Combust. Flame, 153(1-2), 334, 2008
  9. Pang J, Zhang J, J. Anal. Appl. Pyrolysis, 108, 196, 2014
  10. Zhang J, Zhou LX, Fuel, 80(2), 289, 2001
  11. Goshayeshi B, Sutherland JC, Combust. Flame, 161(7), 1900, 2014
  12. Bharadwaj A, Baxter LL, Robinson AL, Energy Fuels, 18(4), 1021, 2004
  13. Backreedy RI, Fletcher LM, Jones JM, Ma L, Pourkashanian M, Williams A, P. Combust. Inst., 30, 2955, 2005
  14. Guo Q, Chen XL, Liu HF, Fuel, 94(1), 551, 2012
  15. Gubba SR, Ma L, Pourkashanian M, Williams A, Fuel Process. Technol., 92(11), 2185, 2011
  16. Mando M, Rosendahl L, Yin C, Sorensen H, Fuel, 89(10), 3051, 2010
  17. Cui HP, Grace JR, Chem. Eng. Sci., 62(1-2), 45, 2007
  18. Li J, Zhang J, Combust. Sci. Technol., submitted.
  19. Turns SR, An Introduction to Combustion: Concepts and applications, McGraw-Hill, New York (1996).
  20. Grow DT, Combust. Flame, 80, 209, 1990
  21. Momeni M, Yin C, Kær SK, Hansen TB, Jensen PA, Glarborg P, Energy Fuels, 27, 507, 2012
  22. Momeni M, Yin CG, Kaer SK, Hvid SL, Energy Fuels, 27(2), 1061, 2013
  23. Levy JM, Chana LK, Sarofima AF, Beera JM, Symposium (International) on Combustion, 18, 111, 1981
  24. Jones JM, Patterson PM, Pourkashanian M, Williams A, Arenillas A, Rubiera F, Pis JJ, Fuel, 78, 1171, 1999
  25. Wang W, Brown SD, Hindmarsh CJ, Thomas KM, Fuel, 73, 1381, 1994
  26. Smoot LD, Smith PJ, Coal combustion and gasification, Plenum Press, New York (1985).
  27. Madden SJ, Celestial Mechanics, 2, 217, 1970