Issue
Korean Journal of Chemical Engineering,
Vol.32, No.9, 1744-1748, 2015
Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles
Surface-modified mesoporous silica nanoparticle (MSN) with methyl groups was used to enhance the CH4-water volumetric mass transfer coefficient (kLa) and the solubility of CH4 in water. Two types of samples were tested: unmodified MSN and methyl-modified MSN. The mass transfer for each type of sample was measured every 20 s by gas chromatography. The results showed that the methyl-modified MSN, which have both hydrophobic and hydrophilic properties on the surface, exhibited higher CH4-water volumetric mass transfer coefficient and solubility in water. The dissolved concentrations of CH4 were enhanced by 10.7% and 27.8%, and the volumetric mass transfer coefficient were enhanced by 28.6% and 84.7%, respectively, by using unmodified MSN and methyl-modified MSN.
[References]
  1. Hamelinck CN, Faaij APC, J. Power Sources, 111(1), 1, 2002
  2. Lynd LR, Annu. Rev. Energ. Environ., 21, 403, 1996
  3. Henstra M, Sipma J, Rinzema A, Stams AJM, Curr. Opin. Biotechnol., 18, 200, 2007
  4. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA, Biotechnol. Bioeng., 97(2), 279, 2007
  5. Worden RM, Bredwell MD, Grethlein AJ, Fuels Chem. Biomass., 666, 320, 1997
  6. Jianga H, Chenb Y, Jianga P, Zhanga C, Smithc TJ, Murrellb JC, Xinga XH, Biochem. Eng. J., 49, 277, 2010
  7. Semrau JD, DiSpirito AA, Yoon S, Fems Microbiol. Rev., 34, 496, 2010
  8. Wiesenburg DA, Guinasso NL, J. Chem. Eng. Data, 24, 4, 1979
  9. Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613, 2007
  10. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran J. Environ. Health Sci. Eng., 10, 6, 2013
  11. Dagaonkar MV, Beenackers AACM, Pangarkar VG, Chem. Eng. J., 81(1-3), 203, 2001
  12. Azher NE, Gourich B, Vial C, Bellhaj MS, Bouzidi A, Barkaoui M, Ziyad M, Biochem. Eng. J., 23, 161, 2005
  13. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206, 2009
  14. Hu B, Pacek AW, Stitt EH, Nienow AW, Chem. Eng. Sci., 60(22), 6371, 2005
  15. Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC, Ind. Eng. Chem. Res., 45(12), 4355, 2006
  16. Kim YK, Park SE, Lee H, Yun JY, Bioresour. Technol., 159, 446, 2014
  17. Kluytmans JHJ, van Wachem BGM, Kuster BFM, Schouten JC, Chem. Eng. Sci., 58(20), 4719, 2003
  18. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881, 2008
  19. Ruthiya KC, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. J., 96(1-3), 55, 2003
  20. Gentile F, Oleschko H, Veverka P, Machon V, Paglianti A, Bujalski W, Etchells AW III, Nienow AW, Can. J. Chem. Eng., 81, 3, 2003
  21. Schumacher C, Gonzalez J, Perez-Mendoza M, Wright PA, Seaton NA, Ind. Eng. Chem. Res., 45(16), 5586, 2006
  22. Lee KR, Kim S, Kang DH, Lee JI, Lee YJ, Kim WS, Cho DH, Lim HB, Kim J, Hur NH, Chem. Mater., 20, 6738, 2008
  23. Yang J, Chen J, Song J, Vib. Spectrosc., 50, 178, 2009
  24. Buchel G, Unger KK, Matsumoto A, Tsutsumi K, Adv. Mater., 10(13), 1036, 1998
  25. Nawrocki J, J. Chromatogr. A, 779, 29, 1997
  26. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S, J. Chem. Technol. Metall., 48, 351, 2013
  27. Park S, Yasin M, Kim D, Park HD, Kang CM, Kim DJ, Chang IS, J. Ind. Microbiol. Biotechnol., 40, 995, 2013
  28. Littlejohns JV, Daugulis AJ, Chem. Eng. J., 129(1-3), 67, 2007