Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1625-1633, 2015
A novel sintered metal fiber microfiltration of bio-ethanol fermentation broth
In bio-ethanol fermentation, the broth consists of mainly water and ethanol, together with particulate residues of unreacted feedstock and additives (mostly yeast). Prior to further processing (distillation), and to avoid fouling of heat exchangers and distillation columns, the solids residues of the broth need to be removed to as low a concentration as possible. The current mechanical separation (belt filter or centrifuge) can only remove +10 μm particles representing about 90% of the total solids content. The remaining 10% is usually recovered in the bottom stream of the first distillation column, and forms the stillage that is further treated. To avoid fouling and even eliminate the first distillation column where the ethanol fraction is only increased from 12% (feed) to 16% (top), a better particulate removal is required. Novel sintered metal fiber (SFM) fleeces are highly efficient for microfiltration, and the removal of suspended solids largely exceeds 99%. The paper (i) positions microfiltration in the overall bio ethanol process; (ii) describes the novel sintered metal fiber microfiltration application; (iii) experimentally determines the major operating characteristics of SFM and (iv) predicts the up-scaled operation by using a simplified filtration model. At an ambient feed temperature, the flux of permeate exceeds 5m3/m2h for a TMP of 1.5 bar and a yeast concentration of 15 g/l, as commonly encountered in the fermenter broth.
[References]
  1. Amarasekara AS, Handbook of Cellulosic Ethanol, Wiley, New Jersey and Scrivener Publishing LLC, Massachusetts (2014).
  2. Lurgi, Retrieved from http://gep-france.com/biocarb/Bioethanol-Lurgi.pdf (11/05/2014).
  3. Zhang HL, Baeyens J, Tan TW, Energy, 48(1), 380, 2012
  4. Zhang HL, Baeyens J, Tan TW, Chem. Eng. Res. Des., 90(12), 2122, 2012
  5. Choi GW, Kang HW, Kim YR, Chung BW, Biotechnol. Bioeng., 13, 765, 2008
  6. Wei P, Cheng LH, Zhang L, Xu XH, Chen HL, Cao CJ, Renew. Sust. Energ. Rev., 30, 388, 2014
  7. Castaing JB, Masse A, Sechet V, Sabiri NE, Pontie M, Haure J, Jaouen P, Desalination, 276(1-3), 386, 2011
  8. Kang Q, Huybrechts J, Van der Bruggen B, Baeyens J, Tan TW, Dewil R, Sep. Purif. Technol., 136, 144, 2014
  9. Baeyens J, Kang Q, Apples L, Dewil R, Lv YQ, Tan TW, Prog. Energy Combust. Sci., DOI:10.1016/j.pecs.2014.10.003., 2014
  10. Lipnizki F, Desalination, 250(3), 1067, 2010
  11. Christenson L, Sims R, Biotechnol. Adv., 29, 686, 2011
  12. Brennan L, Owende P, Renew. Sust. Energ. Rev., 14, 557, 2010
  13. Nomura M, Bin T, Nakao S, Sep. Purif. Technol., 27(1), 59, 2002
  14. Kaseno, Miyazawa I, Kokugan T, J. Ferment. Bioeng., 86(5), 488, 1998
  15. Ikegami T, Kitamoto D, Negishi H, Haraya K, Matsuda H, Nitanai Y, Koura N, Sano T, Yanagishita H, J. Chem. Technol. Biotechnol., 78(9), 1006, 2003
  16. Haelssig JB, Tremblay AY, Thibault J, Chem. Eng. Sci., 68(1), 492, 2012
  17. Aouinti L, Belbachir M, Appl. Clay Sci., 39, 78, 2008
  18. Peng P, Shi B, Lan Y, Sep. Sci. Technol., 46, 234, 2010
  19. Han IS, Cheryan M, J. Membr. Sci., 107(1-2), 107, 1995
  20. Liu S, Amidon TE, Wood DC, J. Biobased. Mater. Bio., 2, 121, 2008
  21. Sjoman E, Manttari M, Nystrom M, Koivikko H, Heikkila H, J. Membr. Sci., 310(1-2), 268, 2008
  22. Qi BK, Luo JQ, Chen XR, Hang XF, Wan YH, Bioresour. Technol., 102(14), 7111, 2011
  23. Zhou FL, Wang CW, Wei J, Bioresour. Technol., 131, 349, 2013
  24. Zhou FL, Wang CW, Wei J, J. Membr. Sci., 429, 243, 2013
  25. Tanaka M, Fukui M, Matsuno R, Biotechnol. Bioeng., 32, 897, 1988
  26. Knutsen JS, Davis RH, Appl. Biochem. Biotechnol., 113-116, 585, 2004
  27. Leberknight J, Wielenga B, Lee-Jewett A, Menkhaus TJ, J. Membr. Sci., 366(1-2), 405, 2011
  28. Bekaert Advanced Filtration SA, Developing new media based on short metal fibres, Retrieved from www.bekaert.com/baf (11/05/2014).
  29. Matsumoto K, Katsuyama S, Ohya H, Ferment. Technol., 65, 77, 1987
  30. Schulz G, Ripperger S, J. Membr. Sci., 40, 173, 1989
  31. Carman PC, Trans. Inst. Chem. Eng., 50, 150, 1937