Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1564-1569, 2015
Effective adsorption of phenols using nitrogen-containing porous activated carbon prepared from sunflower plates
Nitrogen-containing porous carbons, the 800SP-NH3, were synthesized using sunflower plates as the major carbon source carbonized at 800 oC and activated with concentrated aqueous ammonia at the same temperature. The porous carbons were characterized by nitrogen physical adsorption-desorption, surface area analyzer, FT-IR, and SEM. The adsorption properties of the porous carbons towards phenols were also investigated by batch methods. The test results show that the average pore diameter of porous carbon is smaller than 2 nm, and nitrogen-containing chemical groups are formed on its surface. The adsorption capacity for phenol, 4-chlorophenol, and p-nitrophenol is 316.5mg/g, 330.24mg/g and 387.62mg/g due to its developed pore structure and nitrogen-containing chemical groups. The adsorption isotherm data greatly obey the Langmuir model.
[References]
  1. Beker U, Ganbold B, Dertli H, Gulbayir DD, Energy Conv. Manag., 51(2), 235, 2010
  2. Yin JJ, Chen R, Ji YS, Zhao CD, Zhao GH, Zhang HX, Chem. Eng. J., 157(2-3), 466, 2010
  3. Yu S, Yun HJ, Kim YH, Yi J, Appl. Catal. B: Environ., 144, 893, 2014
  4. Zaviska F, Drogui P, Hachemi EME, Naffrechoux E, Ultrason. Sonochem., 21, 69, 2014
  5. Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV, Chem. Eng. J., 240, 235, 2014
  6. Seftel EM, Puscasu MC, Mertens M, Cool P, Carja G, Appl. Catal. B: Environ., 150-151, 157, 2014
  7. Wang WM, Song J, Han X, J. Hazard. Mater., 262, 412, 2013
  8. Carta R, Desogus F, J. Environ. Chem. Eng., 1, 1292, 2013
  9. Ayusheev AB, Taran OP, Seryak IA, Podyacheva OY, Descorme C, Besson M, Kibis LS, Boronin AI, Romanenko AI, Ismagilov ZR, Parmon V, Appl. Catal. B: Environ., 146, 177, 2014
  10. Zidi C, Tayeb R, Dhahbi M, J. Hazard. Mater., 194, 62, 2011
  11. Zain NNM, Bakar NKA, Mohamad S, Saleh NM, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 118, 1121, 2014
  12. Shen SF, Kentish SE, Stevens GW, Sep. Purif. Technol., 95, 80, 2012
  13. Hasanoglu A, Desalination, 309, 171, 2013
  14. Praveen P, Loh KC, J. Membr. Sci., 437, 1, 2013
  15. Mehdi SS, Jafari SJ, Farrokhi M, Yang JK, Environ. Eng. Res., 18, 247, 2013
  16. Larous S, Meniai AH, Energy Procedia, 18, 905, 2012
  17. Belaib F, Meniai AH, Lehocine MB, Energy Procedia, 18, 1254, 2012
  18. Gladysz-Plaska A, Majdan M, Pikus S, Sternik D, Chem. Eng. J., 179, 140, 2012
  19. Qin G, Yao Y, Wei W, Zhang T, Appl. Surf. Sci., 280, 806, 2013
  20. Pacurariu C, Mihoc G, Popa A, Muntean SG, Ianos R, Chem. Eng. J., 222, 218, 2013
  21. Park KH, Balathanigaimani MS, Shim WG, Lee JW, Moon H, Microporous Mesoporous Mater., 127, 1, 2010
  22. El-Naas MH, Al-Zuhair S, Abu Alhaija M, Chem. Eng. J., 162(3), 997, 2010
  23. Rodrigues LA, da Silva MLCP, Alvarez-Mendes MO, Coutinho AD, Thim GP, Chem. Eng. J., 174(1), 49, 2011
  24. Liu ZG, Zhang FS, Desalination, 267(1), 101, 2011
  25. Monsalvo VM, Mohedano AF, Rodriguez JJ, Desalination, 277(1-3), 377, 2011
  26. Rathinam A, Rao JR, Nair BU, J. Taiwan Inst. Chem. Eng., 42, 952, 2011
  27. Kilic M, Apaydin-Varol E, Putun AE, J. Hazard. Mater., 189(1-2), 397, 2011
  28. Shaarani FW, Hameed BH, Chem. Eng. J., 169(1-3), 180, 2011
  29. Mourao PAM, Laginhas C, Custodio F, Nabais JMV, Carrott PJM, Carrott MMLR, Fuel Process. Technol., 92(2), 241, 2011
  30. Chen YD, Huang MJ, Huang B, Chen XR, J. Anal. Appl. Pyrolysis, 98, 159, 2011
  31. Zhong M, Wang Y, Yu J, Tian Y, Xu G, Particuology, 10, 35, 2012
  32. Purnomo CW, Salim C, Hinode H, Fuel Process. Technol., 102, 132, 2012
  33. Djilani C, Zaghdoudi R, Modarressi A, Rogalski M, Djazi F, Lallam A, Chem. Eng. J., 189-190, 203, 2012
  34. Li DJ, Wu YS, Feng L, Zhang LQ, Bioresour. Technol., 113, 121, 2012
  35. Karunarathne HDSS, Amarasinghe BMWPK, Energy Procedia, 34, 83, 2013
  36. Miao Q, Tang Y, Xu J, Liu X, Xiao L, Chen Q, J. Taiwan Inst. Chem. Eng., 44, 458, 2013
  37. Ahmed MJ, Theydan SK, J. Anal. Appl. Pyrolysis, 100, 253, 2013
  38. Kulkarni SJ, Tapre RW, Patil SV, Sawarkar MB, Procedia Eng., 51, 300, 2013
  39. Soudani N, Souissi-najar S, Ouederni A, Chin. J. Chem. Eng., 21(12), 1425, 2013
  40. Han Y, Boateng AA, Qi PX, Lima IM, Chang J, J. Environ. Manage., 118, 196, 2013
  41. Giraldo L, Moreno-Pirajan JC, J. Anal. Appl. Pyrolysis, http://dx.doi.org/10.1016/j.jaap.2013.12.007, 2014
  42. Yun YS, Kim D, Park HH, Tak Y, Jin H, Synth. Met., 162, 2337, 2012
  43. Pietrzak R, Fuel, 88(10), 1871, 2009
  44. Kasnejad MH, Esfandiari A, Kaghazchi T, Asasian N, J. Taiwan Inst. Chem. Eng., 43, 736, 2012
  45. Lu GC, Hao J, Liu L, Ma HW, Fang QF, Wu LM, Wei MQ, Zhang YH, Chin. J. Chem. Eng., 19(3), 380, 2011
  46. Kumar S, Zafar M, Prajapati JK, Kumar S, Kannepalli S, J. Hazard. Mater., 185, 287, 2011
  47. Beker U, Ganbold B, Dertli H, Gulbayir DD, Energy Conv. Manag., 51(2), 235, 2010
  48. Zhang CX, Qiao QQ, Piper JDA, Huang BC, Environ. Pollut., 159, 3057, 2011
  49. Hena S, J. Hazard. Mater., 181(1-3), 474, 2010