Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1554-1563, 2015
Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery
Organic-inorganic composite membranes were prepared with sulfonated poly(ether ether ketone) (SPEEK) and different amounts of silica to improve chemical stability and vanadium hindrance for a vanadium redox flow battery. The durability of the prepared composite membrane was verified using a self-made dummy cell system and fully charged vanadium cathode half-cell electrolyte, which contained oxidative vanadium ions (VO2 +). The prepared composite membranes, with covalent crosslinking between the organic polymer and inorganic particles, resulted in reduced vanadium permeability and enhanced chemical stability. Ion exchange capacity, water uptake, proton conductivity, and vanadium permeability decreased with increasing silica content. Selectivity was defined to consider both permeability and proton conductivity and resulted in a membrane that exhibited both high proton conductivity and low ion permeability simultaneously. The prepared 1 wt% silica composite membrane showed 133-fold higher selectivity compared with that of a Nafion112 membrane. After the stability test, the composite membrane showed little change compared to the membrane before the stability test, which confirmed the commercial prospect of SPEEK/SiO2 composite membrane for a vanadium redox flow battery.
[References]
  1. Mohammadi T, Skyllaskazacos M, J. Membr. Sci., 107(1-2), 35, 1995
  2. Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55, 1997
  3. Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153, 1997
  4. Jia CK, Liu JG, Yan CW, J. Power Sources, 195(13), 4380, 2010
  5. Lue SJ, Shih TS, Wei TC, Korean J. Chem. Eng., 23(3), 441, 2006
  6. Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081, 2014
  7. Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55, 1996
  8. Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310, 2005
  9. Mohammadi T, Skyllas-Kazacos M, J. Power Sources, 63, 179, 1996
  10. Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 166(2), 531, 2007
  11. Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 189(2), 1240, 2009
  12. Sang SB, Wu QM, Huang KL, J. Membr. Sci., 305(1-2), 118, 2007
  13. Zeng Z, Jiang CP, Electrochem. Commun., 10, 372, 2008
  14. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98, 2008
  15. Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M, J. Appl. Polym. Sci., 102(2), 1483, 2006
  16. Qi CZ, Gao H, Yan FY, Liu WM, Bao GQ, Sun XD, Chen JM, Zheng XM, J. Appl. Polym. Sci., 97(1), 38, 2005
  17. Wang N, Peng S, Electrochem. Commun., 17, 30, 2012
  18. Silva VS, Ruffmann B, Silva H, Gallego YA, Mendes A, Madeira LM, Nunes SP, J. Power Sources, 140(1), 34, 2005
  19. Luo QT, Zhang HM, Chen J, You DJ, Sun CX, Zhang Y, J. Membr. Sci., 325(2), 553, 2008
  20. Sukkar T, Skyllas-Kazacos M, J. Appl. Electrochem., 34(2), 137, 2004
  21. Li XF, Zhang G, Xu D, Zhao CJ, Na H, J. Power Sources, 165(2), 701, 2007
  22. Chen DY, Wang SJ, Xiao M, Han DM, Meng YZ, J. Power Sources, 195(22), 7701, 2010
  23. Luo YT, Guo JC, Wang CS, Chu D, J. Power Sources, 195(12), 3765, 2010
  24. Kreuer KD, J. Membr. Sci., 185(1), 29, 2001