Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1528-1541, 2015
Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts
Catalytic cracking of camelina oils to hydrocarbon fuels over ZSM-5 and ZSM-5 impregnated with Zn2+(named bifunctional catalyst) was individually carried out at 500 oC using a tubular fixed-bed reactor. Fresh and used catalysts were characterized by ammonia temperature-programmed desorption (NH3-TPD), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and nitrogen isothermal adsorption/desorption micropore analyzer. The effect of catalysts on the yield rate and qualities of products was discussed. The loading of Zn2+ to ZSM-5 provided additional acid sites and increased the ratio of Lewis acid site to Brønsted acid site. BET results revealed that the surface area and pore volume of the catalyst decreased after ZSM-5 was impregnated with zinc, while the pore size increased. When using the bifunctional catalyst, the pH value and heating value of upgraded camelina oils increased, while the oxygen content and moisture content decreased. Additionally, the yield rate of hydrocarbon fuels increased, while the density and oxygen content decreased. Because of a high content of fatty acids, the distillation residues of cracking oils might be recycled to the process to improve the hydrocarbon fuel yield rate.
[References]
  1. Maher KD, Bressler DC, Bioresour. Technol., 98(12), 2351, 2007
  2. Demirbas A, Kara H, Energy Sources Part A-Recovery Util. Environ. Eff., 28(7), 619, 2006
  3. Rao TM, Clavero MM, Makkee M, ChemSusChem., 3, 807, 2010
  4. Chiappero M, Do PTM, Crossley S, Lobban LL, Resasco DE, Fuel, 90(3), 1155, 2011
  5. Nawaz Z, Xiaoping T, Fei W, Korean J. Chem. Eng., 26(6), 1528, 2009
  6. Wang HL, Yan SL, Salley SO, Ng KYS, Ind. Eng. Chem. Res., 51(30), 10066, 2012
  7. Xu JM, Jiang JC, Sun YJ, Chen J, Bioresour. Technol., 101(24), 9803, 2010
  8. Zhang H, Cheng Y, Vispute TP, Xiao R, Huber GW, Energy Environ. Sci., 4, 2297, 2011
  9. Penzien J, Abraham A, Bokhoven JA, Jentys A, Muller TE, Sievers C, Lercher JA, J. Phys. Chem., 108, 4116, 2004
  10. Demirbas A, Energy Sources, 25(5), 457, 2003
  11. Zakaria ZY, Linnekoski J, Amin NA, Chem. Eng., 207-208, 803, 2012
  12. Sharma RK, Anand M, Rana BS, Kumar R, Farooqui SA, Sibi MG, Sinha AK, Catal. Today, 198(1), 314, 2012
  13. Li H, Shen BX, Kabalu JC, Nchare M, Renew. Energy, 34(4), 1033, 2009
  14. Boateng AA, Mullen CA, Goldberg NM, Energy Fuels, 24, 6624, 2010
  15. Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H, Renew. Sust. Energ. Rev., 18, 211, 2013
  16. Zhao X, Wei L, Julson J, Huang Y, J. Sustainable Bioenergy Systems, 4, 199, 2014
  17. Carlson TR, Jae J, Lin Y, Tompsett GA, Huber GW, J. Catal., 2, 110, 2010
  18. Zhao X, Wei L, Julson J, Qiao Q, Dubey A, Anderson G, N. Biotechnol., 32, 300, 2015
  19. Ren XT, Li N, Cao JQ, Wang ZY, Liu SY, Xiang SH, Appl. Catal. A: Gen., 298, 144, 2006
  20. Weingarten R, Tompsett GA, Conner WC, Huber GW, J. Catal., 279(1), 174, 2011
  21. Zheng AQ, Zhao ZL, Chang S, Huang Z, Wu HX, Wang XB, He F, Li HB, J. Mol. Catal. A-Chem., 383, 23, 2014
  22. Jin H, Wang X, Gu Z, Hoefelmeyer JD, Muthukumarappan K, Julson J, RSC Adv., 4, 14136, 2014
  23. Zhao X, Wei L, Julson J, AIMS Energy, 2, 193, 2014
  24. Huang Y, Wei L, Julson J, Gao Y, Zhao X, J. Anal. Appl. Pyrolysis, 111, 148, 2015
  25. Bezergianni S, Voutetakis S, Kalogianni A, Ind. Eng. Chem. Res., 48(18), 8402, 2009
  26. Trimm DL, Appl. Catal. A: Gen., 212(1-2), 153, 2001
  27. Kouva S, Kanervo J, Schussler F, Olindo R, Lercher JA, Krause O, Chem. Eng. Sci., 89, 40, 2013
  28. Camiloti AM, Jahn SL, Velasco ND, Moura LF, Cardoso D, Appl. Catal. A: Gen., 182(1), 107, 1999
  29. Bagnasco G, J. Catal., 159(1), 249, 1996
  30. Lonyi F, Valyon J, Thermochim. Acta, 373(1), 53, 2001
  31. Kumar N, Lindfors LE, Byggningsbacka R, Appl. Catal. A: Gen., 139(1-2), 189, 1996
  32. Al-Khattaf S, Appl. Catal. A: Gen., 231(1-2), 293, 2002
  33. Sharma YC, Singh B, Korstad J, Energy Fuels, 24, 3223, 2010
  34. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW, J. Catal., 279(2), 257, 2011
  35. Jiang Y, Juan J, Meng X, Cao W, Yarmo MA, Zhang J, Chem. Res. Chinese U., 23, 349, 2007
  36. Khatamian M, Irani M, J. Iran. Chem. Soc., 6, 187, 2009
  37. Yaliwal VS, Daboji SR, Banapurmath NR, Tewari PG, Int. J. Eng. Sci. Technol., 2, 5938, 2010
  38. Santillan-Jimenez E, Morgan T, Lacny J, Mohapatra S, Crocker M, Fuel, 103, 1010, 2013
  39. Rustan AC, Drevon CA, Encyclopedia of Life Sciences, 1, 2005
  40. Noureddini H, Teoh BC, Clements LD, J. Am. Oil Chem. Soc., 69, 1189, 1992
  41. Zhang HY, Xiao R, Huang H, Xiao G, Bioresour. Technol., 100(3), 1428, 2009