Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1477-1485, 2015
Performance simulations of MEA/NH3 based large-scale CO2 capture in packed columns under different flue gas parameters
Based on the rate-based process simulation, performances of MEA and NH3 based large-scale CO2 capture in packed columns under different flue gas parameters were investigated. Simulation results show that the CO2 regeneration energy for the MEA based process is lower than that for the NH3 based process, which is mainly because the flow rate of the MEA solution is significantly lower than that of the aqueous ammonia. The MEA leakage concentration is far lower than the NH3 leakage concentration, and this indicates that the NH3 abatement system should be added for dealing with the NH3 slip in the NH3 based CO2 capture process. With the flow rate of the flue gas increasing, the liquid gas ratios for both processes decrease, which gives rise to the decrease of the CO2 removal efficiencies for the two processes. Since the liquid gas ratios are very high, the temperature of the flue gas has little effects on the MEA and NH3 based CO2 capture processes. The comparative studies on the effects of the flue gas parameters can provide technical guidance for the pretreatment of the flue gas before CO2 capture.
[References]
  1. Zhao BT, Su YX, Peng YC, Int. J. Greenh. Gas Control, 17, 481, 2013
  2. Razi N, Svendsen HF, Bolland O, Int. J. Greenh. Gas Control, 19, 331, 2013
  3. Park SY, Yi KB, Ko CH, Park JH, Kim JN, Hong WH, Energy Fuels, 24, 3704, 2010
  4. Huang B, Xu SS, Gao SW, Liu LB, Tao JY, Niu HW, Cai M, Cheng JA, Appl. Energy, 87(11), 3347, 2010
  5. Galindo P, Schaffer A, Brechtel K, Unterberger S, Scheffknecht G, Fuel, 101, 2, 2012
  6. Zeng Q, Guo YC, Niu ZQ, Lin WY, Ind. Eng. Chem. Res., 50(17), 10168, 2011
  7. Ahn CK, Lee HW, Chang YS, Han K, Kim JY, Rhee CH, Chun HD, Lee MW, Park JM, Int. J. Greenh. Gas Control, 5, 1606, 2011
  8. Darde V, van Well WJM, Fosboel PL, Stenby EH, Thomsen K, Int. J. Greenh. Gas Control, 5, 1149, 2011
  9. Yeh JT, Resnik KP, Rygle K, Pennline HW, Fuel Process. Technol., 86(14-15), 1533, 2005
  10. Choi BG, Kim GH, Yi KB, Kim JN, Hong WH, Korean J. Chem. Eng., 29(4), 478, 2012
  11. Han K, Ahn CK, Lee MS, Rhee CH, Kim JY, Chun HD, Int. J. Greenh. Gas Control, 14, 270, 2013
  12. AspenTech, Aspen Plus document version V7.3, AspenTech, Burlington, Massachusetts (2011).
  13. Duan LQ, Yang Y, Zhang SH, Yang YP, J. N. Chin. Electr. Power Univ., 39(1), 7, 2012
  14. Zhang MK, Guo YC, Int. J. Greenh. Gas Control, 16, 61, 2013
  15. Yu H, Li LC, Morgan S, Allport A, Cottrell A, Mcgregor J, Wardhaugh L, Feron P, In: Chemeca 2012, Wellington, 1097 (2012).
  16. Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233, 2009
  17. Ghaemi A, Shahhosseini S, Maragheh MG, Chem. Eng. J., 149(1-3), 110, 2009
  18. Puxty G, Rowland R, Attalla M, Chem. Eng. Sci., 65(2), 915, 2010
  19. Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia, 1, 949, 2009
  20. Hsu CH, Chu H, Cho CM, J. Air Waste Manage. Assoc., 53, 246, 2003
  21. Yeh AC, Bai H, Sci. Total Environ., 228, 121, 1999
  22. Niu ZQ, Guo YC, Lin WY, J. Chem. Eng. Chin. Univ., 24(3), 514, 2010
  23. Pellegrini G, Strube R, Manfrida G, Energy, 35(2), 851, 2010
  24. Ma SC, Wang MX, Sun YX, Cui JW, Chen WZ, J. Chin. Soc. Power Eng., 32(1), 52, 2012
  25. Rivera-Tinoco R, Bouallou C, J. Clean Prod., 18, 875, 2010
  26. Zhang MK, Guo YC, Appl. Energy, 111, 142, 2013
  27. Niu ZQ, Guo YC, Lin WY, Proc. CSEE, 30(32), 41, 2010
  28. Ma SC, Sun YX, Zhao Y, Fang WW, Han J, Liang PZ, Acta Chim. Sinica, 69(12), 1469, 2011
  29. Van Wagener DH, Rochelle GT, Chem. Eng. Res. Des., 89(9A), 1639, 2011
  30. Zeng XZ, Chen CH, Gao BC, Environ. Prot. Chem. Ind., 20(6), 12, 2000
  31. Mathias PM, Reddy S, O’Connell JP, Int. J. Greenh. Gas Control, 4, 174, 2010
  32. Zhang MK, Guo YC, Int. J. Greenh. Gas Control, 29, 22, 2014
  33. Chen E, Carbon dioxide absorption into piperazine promoted potassium carbonate using structured packing, Ph. D. Thesis, University of Texas at Austin, Austin, Texas (2012).
  34. Chilton TH, Colburn AP, Ind. Eng. Chem. Res., 26, 1183, 1934
  35. Bravo JL, Rocha JA, Fair JR, Hydrocarb. Process., 64, 91, 1985
  36. Niu ZQ, Guo YC, Zeng Q, Lin WY, Fuel Process. Technol., 108, 154, 2013
  37. Pinsent BR, Pearson L, Roughton FJW, J. Chem. Soc.-Faraday Trans., 52, 1512, 1956
  38. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7, 1977
  39. Lee JI, Otto FD, Mather AE, J. Appl. Chem. Biotechnol., 26, 541, 1976
  40. Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140, 1995
  41. Kurz F, Rumpf B, Maurer G, Fluid Phase Equilib., 104, 261, 1995
  42. Goppert U, Maurer G, Fluid Phase Equilib., 41, 153, 1988
  43. Gouedard C, Picq D, Launay F, Carrette PL, Int. J. Greenh. Gas Control., 10, 244, 2012