Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1447-1454, 2015
Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review
Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.
[References]
  1. Boldt JR, Queneau P, The Winning of Nickel; Its Geology, Mining, and Extractive Metallurgy, Longmans Canada Ltd., Toronto (1967).
  2. Le L, Tang J, Ryan D, Valix M, Miner. Eng., 19(12), 1259, 2006
  3. Swain PK, Chaudhury GR, Sukla LB, Korean J. Chem. Eng., 24(6), 932, 2007
  4. Valix M, Usai F, Malik R, Miner. Eng., 14(2), 197, 2001
  5. Brand NW, Butt CRM, Elias M, AGSO J. Aust. Geol. Geophys., 17(4), 81, 1998
  6. Swamy YV, Kar BB, Mohanty JK, Hydrometallurgy, 69, 89, 2003
  7. Golightly JP, Econ. Geol., 75, 710, 1981
  8. Sukla LB, Das RP, T. Indian I. Metals, 40, 351, 1987
  9. Simate GS, Ndlovu S, Walubita LF, Hydrometallurgy, 103, 150, 2010
  10. Thomas FT, Res. Policy, 21(3), 179, 1995
  11. Jinhui L, Xinhai L, Qiyang H, Zhixing W, Youyuan Z, Junchao Z, Wanrong L, Lingjun L, Hydrometallurgy, 99, 84, 2009
  12. Behera SK, Panda PP, Singh S, Pradhan N, Sukla LB, Mishra BK, Int. Biodeterior. Biodegrad., 65, 1035, 2011
  13. Rawlings DE, Annu. Rev. Microbiol., 56, 65, 2002
  14. Olson GJ, Brierley JA, Brierley CL, Appl. Microbiol. Biotechnol., 63(3), 249, 2003
  15. Rawlings DE, Dew D, du Plessis C, Trends Biotechnol., 21, 38, 2003
  16. Acevedo F, Electron. J. Biotechnol., 3(3), 184, 2000
  17. Castro IM, Fietto JLR, Vieira RX, Tropia MJM, Campos LMM, Paniago EP, Brandao RL, Hydrometallurgy, 57, 39, 2000
  18. Tzeferis P, Metalleiologika Metall. Chron., 2(1), 85, 1992
  19. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157, 2012
  20. Sukla LB, Panchanadikar VV, Kar RN, World J. Microb. Biot., 9, 255, 1993
  21. TZEFERIS PG, Int. J. Miner. Process., 42(3), 267, 1994
  22. Bosecker K, Hydrometallurgy, 59, 245, 2001
  23. Rezza I, Salinas E, Elorza M, de Tosetti MS, Donati E, Process Biochem., 36(6), 495, 2001
  24. Tang JA, Valix M, Miner. Eng., 19(12), 1274, 2006
  25. Mohapatra S, Bohidar S, Pradhan N, Kar RN, Sukla LB, Hydrometallurgy, 85, 1, 2007
  26. Biswas S, Banerjee PC, Mukherjee S, Dey R, Res. J. Pharm., Biol. Chem. Sci., 4(2), 739, 2013
  27. Biswas S, Dey R, Mukherjee S, Banerjee PC, Appl. Biochem. Biotechnol., 170(7), 1547, 2013
  28. Burgstaller W, Schinner F, J. Biotechnol., 27, 91, 1993
  29. Sukla LB, Panchanadikar VV, Hydrometallurgy, 32, 373, 1993
  30. Kubicek CP, Kunar GS, Woehrer W, Roehr M, Appl. Environ. Microbiol., 54, 633, 1988
  31. Hammel KE, Mozuch MD, Jensen KA, Kersten PJ, Biochemistry, 33, 13349, 1994
  32. Ruijter GJG, van de Vondervoort PJI, Visser J, J. Microbiol., 145, 2569, 1999
  33. Pedersen H, Gem C, Nielsen J, J. Mol. Gen. Genet., 263, 281, 2000
  34. Pedersen H, Christensen B, Hjort C, Nielsen J, Metab. Eng., 2, 4, 2000
  35. Behera SK, Panda PP, Saini SK, Pradhan N, Sukla LB, Mishra BK, Korean J. Chem. Eng., 30(2), 392, 2013
  36. Chen P, Yan L, Leng FF, Nan WB, Yue XX, Zheng YN, Feng N, Li HY, Bioresour. Technol., 102(3), 3260, 2011
  37. Behera SK, Sukla LB, T. Nonferr. Metal. Soc. China, 22, 2840, 2012
  38. Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD, Appl. Microbiol. Biotechnol., 59(2-3), 382, 2002
  39. Alibhai KAK, Dudeney AWL, Leak DJ, Agatzini S, Tzeferis P, Fems Microbiol. Rev., 11, 87, 1993
  40. Ruan HD, Frost RL, Kloprogge JT, Duong L, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 58, 967, 2002
  41. Valix M, Cheung WH, Miner. Eng., 15(8), 607, 2002
  42. Mohapatra S, Sengupta C, Nayak BD, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(5), 1070, 2008
  43. Landers M, Gilkes RJ, Appl. Clay Sci., 35, 162, 2007
  44. Mohapatra S, Pradhan N, Mohanty S, Sukla LB, Miner. Eng., 22(3), 311, 2009
  45. Abdollahi H, Shafaei SZ, Noaparast M, Manafi Z, Niemela SI, Tuovinen OH, Int. J. Miner. Process., 128, 25, 2014
  46. Watling HR, Collinson DM, Li J, Mutch LA, Perrot FA, Rea SM, Reith F, Watkin ELJ, Miner. Eng., 56, 35, 2014
  47. Schippers A, Sand W, Appl. Environ. Microbiol., 65, 319, 1999
  48. Rohwerder T, Gehrke T, Kinzler K, Sand W, Appl. Microbiol. Biotechnol., 63(3), 239, 2003
  49. Hallberg KB, Grail BM, du Plessis CA, Johnson DB, Miner. Eng., 24(7), 620, 2011
  50. Behera SK, Panda SK, Pradhan N, Sukla LB, Mishra BK, Bioresour. Technol., 125, 17, 2012
  51. Kucera J, Zeman J, Mandl M, Cerna H, A. Van Leeuw., 101(4), 919, 2012
  52. Brock TD, Gustafson J, Appl. Environ. Microbiol., 32, 567, 1976
  53. Pronk JT, De Bruyn JC, Bos P, Kuenen JG, Appl. Environ. Microbiol., 58, 2227, 1992
  54. Rawlings DE, Microb. Cell Fact., 4, 13, 2005
  55. Lovley DR, Microbiol. Rev., 55(2), 259, 1991
  56. Caccavo F, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerney MJ, Arch Microbiol., 165, 370, 1996
  57. Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR, Appl. Environ. Microbiol., 72(2), 1558, 2006
  58. Kim SJ, Park SJ, Oh YS, Lee SA, Shin SS, Roh DH, Rhee SK, Int. J. Syst. Evol. Microbiol., 62, 1128, 2012
  59. Zachara J, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC, Geomicrobiol. J., 19, 179, 2002
  60. Roden EE, Lovley DR, Appl. Environ. Microbiol., 59(3), 734, 1993
  61. Kostka JE, Wu J, Nealson KH, Stucki JW, Geochim. Cosmochim. Acta, 63(22), 3705, 1999
  62. Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762, 2013
  63. Brierley AJ, Brierley CL, Hydrometallurgy, 59, 233, 2001
  64. Kodali B, Rao BM, Nasaru LM, Pogaku R, Chem. Eng. Sci., 59(22-23), 5069, 2004
  65. Ndlovu S, Simate GS, Gericke M, Adv. Mater. Res, 71-73, 493, 2009
  66. Brassuer G, Levican G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D, Biochim. Biophys. Acta, 1656, 114, 2004
  67. Rohwerder T, Sand W, Microbiology, 149, 1699, 2003
  68. Wakai S, Kikumoto M, Kanao T, Kamimura K, Biosci. Biotechnol. Biochem., 68, 2519, 2004