Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1164-1169, 2015
Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR
Thermal decomposition of ε-hexanitrohexaazaisowurtzitane (HNIW) was studied by thermogravimetrydifferential scanning calorimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-DSC-MS-FTIR) simultaneous analysis. It has been shown that there is a crystal transition point for ε-HNIW, and only a single decomposition process has been observed for HNIW. The kinetic parameters of thermal decomposition of HNIW were obtained by Kissinger and Flynn-Wall-Ozawa methods, indicating that HNIW has the higher reactivity compared to the other nitramines. The HNIW decomposition mechanism demonstrated by the non-isothermal kinetics conformed to Avrami-Erofeev equation with the factor of nucleus growth of n=1/3 and the conversion degree of α from 0.1 to 0.7. The MS and FTIR analyses indicated that the thermal decomposition of HNIW favors N-N bond cleavage over C-N bond cleavage as the rate determining step.
[References]
  1. Kissinger HE, Anal. Chem., 29, 1702, 1957
  2. Lee JS, Jaw KS, J. Therm. Anal. Calorim., 85(2), 463, 2006
  3. Naik NH, Gore GM, Gandhe BR, Sikder AK, J. Hazard. Mater., 159(2-3), 630, 2008
  4. Liptay G, Nagy J, Kuszmann AB, Weil JC, J. Therm. Anal. Calorim., 32, 1683, 1987
  5. Liu R, Zhou ZN, Yin YL, Yang L, Zhang TL, Thermochim. Acta, 537, 13, 2012
  6. Xing XL, Zhao FQ, Ma SN, Xu SY, Xiao LB, Gao HX, Hu RZ, J. Therm. Anal. Calorim., 110, 1451, 2012
  7. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J, J. Phys. Chem. A, 109(12), 12964, 2005
  8. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS, J. Phys. Chem. B, 110(14), 7203, 2006
  9. Sorescu DC, Rice BM, Thompson DL, J. Phys. Chem. B, 102(6), 948, 1998
  10. Korsounskii BL, Nedelko VV, Chukanov NV, Larikova TS, Volk F, Russ. Chem. Bull., 49(5), 812, 2000
  11. Yang RJ, An HM, Tan HM, Combust. Flame, 135(4), 463, 2003
  12. Patil DG, Brill TB, Combust. Flame, 87, 145, 1991
  13. Turcotte R, Vachon M, Kwok QSM, Wang RP, Jones DEG, Thermochim. Acta, 433(1-2), 105, 2005
  14. Nedelko AV, Chukanov NV, Raevskii AV, Korsounskii BL, Larikova TS, Kolesova OI, Propellants, Explosives, Pyrotechnics, 25, 255, 2000
  15. Yan QL, Zeman S, Elbeih A, Song ZW, J. Therm. Anal. Calorim., 112, 823, 2013
  16. Jiang XB, Guo XY, Ren H, Zhu YL, Jiao QJ, J. Chem. Eng. Jpn., 45(6), 380, 2012
  17. Jiang X, Guo X, Ren H, Jiao Q, Central European J. Energ. Mater., 9(3), 139, 2012
  18. Ren yl, Cheng BW, Zhang JS, Jiang AB, Fu WL, Chem. Res. Chiness Universities, 24(5), 628, 2008
  19. An C, Geng X, Wang J, Sci. Tech. Energetic Materials, 73(5-6), 175, 2012
  20. Lobbecke S, Bohn MA, Pfeil A, Krause H, 29th International Annual Conference of ICT, 145, Karlsruhe, Germany (1998).
  21. Ozawa T, J. Therm. Anal., 2, 301, 1970
  22. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ, Thermal analysis kinetics, Second Ed., Beijing, Science Press (2008)(In Chinese).
  23. MacCallum JR, Tanner J, Eur. Polym. J., 6, 907, 1970
  24. Coats AW, Redfern JP, Nature, 201, 68, 1964
  25. Satava V, Sestak JJ, J. Therm. Anal., 8, 477, 1975
  26. Yang ZQ, Hu RZ, Liang YJ, Li XD, Acta Phys. Chim. Sinica, 2(1), 13, 1986
  27. Kim JH, Yim YJ, J. Chem. Eng. Jpn., 32(2), 237, 1999
  28. Brush PJ, Temperature Jump/Fourier transform Infrared Spectroscopy: A Noval Method for Investigation the Chemistry of a Burning Surface, University of Delaware (1993).
  29. Thynell ST, Gongwer PE, Brill TB, J. Propul. Power, 12(5), 933, 1996
  30. Zhu YL, Huang H, Ren H, Jiao QJ, J. Energy Mater., 31, 178, 2013