Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1119-1128, 2015
Optimization of hexavalent chromium removal from aqueous solution using acid-modified granular activated carbon as adsorbent through response surface methodology
Response surface methodology (RSM) was applied to evaluate the effect of the main operational variables, including initial pH, initial chromium ion concentration, bulk density of GAC and time on the removal of hexavalent chromium Cr(VI) from contaminated groundwater by permeable reactive barriers (PRB) with acid-modified granular activated carbon (GAC) as an adsorbent material. The removal rates of Cr(VI) under different values of these parameters were investigated and results indicated high adsorption capacity at low pH and low initial metal ion concentration of Cr(VI), but the bulk density of GAC slightly influenced the process efficiency. According to the ANOVA (analysis of variance) results, the model presents high R2 values of 94.35% for Cr(VI) removal efficiency, which indicates that the accuracy of the polynomial models was good. Also, quadratic regression models with estimated coefficients were developed to describe the pollutant removals.
[References]
  1. Weng CH, Lin YT, Lin TY, Kao CM, J. Hazard. Mater., 149(2), 292, 2007
  2. Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H, Sep. Purif. Technol., 44(1), 31, 2005
  3. Alloway BJ, 2nd Ed. London, Blackie Academic and Professional, 368 (1995)., 1995
  4. Kowalski Z, J. Hazard. Mater., 37, 137, 1994
  5. Singh IB, Singh DR, Environ. Technol., 23, 85, 2002
  6. Golonka MC, Polyhedron, 15, 3667, 1995
  7. Acar FN, Malkoc E, Bioresour. Technol., 94(1), 13, 2004
  8. Babel S, Kurniawan TA, Chemosphere, 54, 951, 2004
  9. U.S. Army Corps of Engineers (USACE). Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents. Washington, DC., U.S. Department of the Army, CEMP DG 1110-345-117 (1997).
  10. Attia AA, Khedr SA, Elkholy SA, Brazilian J. Chem. Eng., 27, 183, 2010
  11. Chatterjee S, Lee DS, Lee MW, Woo SH, Bioresour. Technol., 100(17), 3862, 2009
  12. Thirunavukkarasu E, Palanivelu K, Indian J. Biotechnol., 6, 359, 2007
  13. Yigitoglu M, Arslan M, Polym. Bull., 55(4), 259, 2005
  14. Liu SX, Chen X, Chen XY, Liu ZF, Wang HL, J. Hazard. Mater., 141(1), 315, 2007
  15. Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458, 2002
  16. Babel S, Kurniawan TA, Chemosphere, 54, 951, 2004
  17. Park G, Lee JK, Ryu SK, Carbon Sci., 3, 219, 2002
  18. Selvi K, Pattabhi S, Kadirvelu K, Bioresour. Technol., 80(1), 87, 2001
  19. Satapathy D, Natarajanb GS, Patil SJ, J. Chinese Chem. Soc., 52, 35, 2005
  20. Aleboyeh A, Daneshvar N, Kasiri MB, Chem. Eng. Process., 47(5), 827, 2008
  21. Zaroual Z, Chaair H, Essadki AH, El Ass K, Azzi M, Chem. Eng. J., 148(2-3), 488, 2009
  22. Zodi S, Potier O, Lapicque F, Leclerc JP, Desalination, 261(1-2), 186, 2010
  23. Arora M, Snape I, Stevens G, Cold Regions Sci. Technol., 66, 12, 2011
  24. Wu FC, Tseng RL, Juang RS, Sep. Purif. Technol., 47(1-2), 10, 2005
  25. Hu Z, Srinivasan MP, Microporous Mesoporous Mater., 27, 11, 1999
  26. Hameed BH, Tan IAW, Ahmad AL, J. Hazard. Mater., 164(2-3), 1316, 2009
  27. Moghaddam SS, Moghaddam MRA, Arami M, J. Hazard. Mater., 175(1-3), 651, 2010
  28. Nordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A, J. Mater. Process. Technol., 145, 46, 2004
  29. Khataee AR, Zarei M, Moradkhannejhad L, Desalination, 258(1-3), 112, 2010
  30. Han RP, Wang YF, Yu WH, Zou WH, Shi H, Liu HM, J. Hazard. Mater., 141(3), 713, 2007
  31. Hamadi NK, Chen XD, Farid MM, Lu MGQ, Chem. Eng. J., 84(2), 95, 2001
  32. Valdes H, Sanchez-Polo M, Rivera-Utrilla J, Zaror CA, Langmuir, 18(6), 2111, 2002
  33. Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223, 1999