Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1069-1074, 2015
Highly stable palladium-loaded TiO2 nanotube array electrode for the electrocatalytic hydrodehalogenation of polychlorinated biphenyls
Palladized TiO2 nanotube array electrode was prepared for the electrocatalytic hydrodehalogenation (HDH) of 2,4,5-trichlorobiphenyl (2,4,5-PCB). The TiO2 nanotube array electrode was successfully fabricated by anodic oxidation method, and Pd was loaded onto the TiO2 nanotubes by electrochemical deposition. The morphology and structure of the nanotube array electrodes with and without Pd catalysts were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the diameters and lengths of the TiO2 nanotubes were 30-50 nm and 200-400 nm, respectively. The particle size of the Pd was about 12 nm. Electrocatalytic HDH of 2,4,5-PCB with the Pd/TiO2 nanotube array electrode was performed in H-cell reactor. Under a constant potential of .1.0 V, the HDH efficiency of 2,4,5-PCB was 90% and the biphenyl yield was 83% (15% current efficiency) within 180min at the Pd/TiO2 nanotube array electrode. Compared with the Pd/Ti electrode, the Pd/TiO2 nanotube array electrode exhibited higher HDH efficiency and stability. Additionally, the effect of the primary HDH factors was also investigated.
[References]
  1. Tanabe S, Environ. Pollut., 50, 5, 1988
  2. Zacs D, Rjabova J, Bartkevics V, Environ. Sci. Technol., 47, 9478, 2013
  3. Martinez C, Canle M, Fernandez MI, Santaballa JA, Faria J, Appl. Catal. B: Environ., 107(1-2), 110, 2011
  4. Gray SL, Shaw AC, Gagne AX, Chan HM, J. Toxicol. Environ. Health, Part A, 76, 701, 2013
  5. Kishino T, Kobayshi K, Water Res., 30, 393, 1996
  6. Farwell S, Beland F, Geer R, J. Electroanal. Chem. Interfacial Electrochem., 61, 303, 1975
  7. Cheng IF, Fernando Q, Korte N, Environ. Sci. Technol., 31, 1074, 1997
  8. Chetty R, Christensen PA, Golding BT, Scott K, Appl. Catal. A: Gen., 271(1-2), 185, 2004
  9. Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J, Environ. Sci. Technol., 34, 1265, 2000
  10. Ross NC, Spackman RA, Hitchman ML, White PC, J. Appl. Electrochem., 27(1), 51, 1997
  11. Higuera MJ, Montoya MR, Galvin RM, Mellado JMR, J. Electroanal. Chem., 474(2), 174, 1999
  12. Chen G, Wang ZY, Xia DG, Electrochem. Commun., 6, 268, 2004
  13. Durante C, Perazzolo V, Perini L, Favaro M, Granozzi G, Gennaro A, Appl. Catal. B: Environ., 158-159, 286, 2014
  14. Liu BZ, Hu XB, Deng YH, Yang SG, Sun C, J. Solid State Electrochem., 16, 927, 2012
  15. Durante C, Huang BB, Isse AA, Gennaro A, Appl. Catal. B: Environ., 126, 355, 2012
  16. Yang B, Yu G, Environ. Sci. Technol., 41, 7503, 2007
  17. Cheng H, Scott K, Christensen PA, J. Electrochem. Soc., 150(2), D25, 2003
  18. Sun ZR, Wei XF, Hu X, Wang K, Shen HT, Colloids Surf. A: Physicochem. Eng. Asp., 414, 314, 2012
  19. Sun ZR, Ge H, Hu X, Peng YZ, Sep. Purif. Technol., 72(2), 133, 2010
  20. Sun ZR, Wei XF, Han YB, Tong S, Hu X, J. Hazard. Mater., 244, 287, 2013
  21. Tsyganok AI, Otsuka K, Appl. Catal. B: Environ., 22(1), 15, 1999
  22. Perini L, Durante C, Favaro M, Agnoli S, Granozzi G, Gennaro A, Appl. Catal. B: Environ., 144, 300, 2013
  23. Cheng H, Scott K, Christensen PA, J. Electrochem. Soc., 150(2), D17, 2003
  24. Cui CY, Quan X, Yu HT, Han YH, Appl. Catal. B: Environ., 80(1-2), 122, 2008
  25. Cui CY, Quan X, Chen S, Zhao HM, Sep. Purif. Technol., 47(1-2), 73, 2005
  26. Chen Y, Li HY, Liu WJ, Tu Y, Zhang YH, Han WQ, Wang LJ, Chemosphere, 113, 48, 2014
  27. Wang FW, Yan XY, Xu M, Li SD, Fang WY, Electrochim. Acta, 97, 253, 2013
  28. Ma ZY, Zhang LX, Chen RZ, Xing WH, Xu NP, Chem. Eng. J., 138(1-3), 517, 2008
  29. Lu N, Quan X, Li J, Chen S, Yu H, Chen G, J. Phys. Chem. C, 111, 11836, 2007
  30. Arunagiri T, Golden TD, Chyan O, Mater. Chem. Phys., 92(1), 152, 2005
  31. Chen H, Shao Y, Xu ZY, Wan HQ, Wan YQ, Zheng SR, Zhu DQ, Appl. Catal. B: Environ., 105(3-4), 255, 2011
  32. Yang B, Yu G, Huang J, Environ. Sci. Technol., 41, 7503, 2007