Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1060-1063, 2015
Gas-liquid mass transfer coefficient of methane in bubble column reactor
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (kLa). The feasibility of the new reactor was demonstrated by measuring kLa values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large kLa value of 102.9 h.1 was obtained.
[References]
  1. Naik S, Goud V, Rout P, Dalai A, Renew. Sust. Energ. Rev., 14, 578, 2010
  2. Dubois I, Curr. Opin. Environ., 3, 11, 2011
  3. Novaes E, Kirst M, Chiang V, Sederoff H, Sederoff R, Plant Phys., 154, 555, 2010
  4. Henstra A, Sipma J, Rinzema A, Stams A, Curr. Opin. Biotechnol., 18, 200, 2007
  5. Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM, AAPG Bull., 89(2), 155, 2005
  6. Ross DJK, Bustin RM, Mar. Petrol. Geol., 26, 916, 2005
  7. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977, 2013
  8. Morris SA, Radajewski S, Willison TW, Murrel JC, Appl. Environ. Microbiol., 68, 1446, 2002
  9. King GM, Adamsen APS, Appl. Environ. Microbiol., 58, 2758, 1992
  10. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM, Nature, 450, 874, 2007
  11. Setzmann U, Wagner W, Pruss A, J. Phys. Chem. Ref Data, 20, 1061, 2001
  12. Helgeson HC, Richard L, McKenzie W, Norton DL, Schmitt A, Geochim. Cosmochim. Ac., 73, 594, 2009
  13. Duan Z, Mao S, Geochim. Cosmochim. Ac., 70, 3369, 2006
  14. Duan Z, Moller N, Greenberg J, Weare JH, Geochim. Cosmochim. Acta, 56, 1451, 1992
  15. Akita K, Yoshidal F, Ind. Eng. Chem. Proc. Des. Dev., 12, 76, 1973
  16. Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, Ind. Microbiol. Biotechnol., 40, 995, 2013
  17. Riggs SS, Heindel TJ, Biotechnol. Prog., 22(3), 903, 2006
  18. Riet KV, Ind. Eng. Chem. Proc. Des. Dev., 18, 357, 1979
  19. Yu YH, Ramsay JA, Ramsay BA, Biotechnol. Bioeng., 95(5), 788, 2006
  20. Yamamoto S, Alcauskas JB, Crozier TE, J. Chem. Eng. Data, 2, 1, 1976
  21. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran. J. Environ. Health Sci. Eng., 10, 1, 2013
  22. Martin M, Montes FJ, Galan MA, Chem. Eng. Sci., 63(12), 3223, 2008
  23. Fujasova M, Linek V, Moucha T, Chem. Eng. Sci., 62(6), 1650, 2007
  24. Puthli M, Rathod V, Pandit A, Biochem. Eng. J., 23, 25, 2005
  25. Arjunwadkar S, Sarvanan K, Kulkarni P, Pandit A, Biochem. Eng. J., 1, 99, 1998