Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1023-1028, 2015
A simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell cultures
We have developed a simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions to increase the recovery and separation efficiency of the anticancer agent paclitaxel from plant cell culture. The simultaneous process under the conditions of extracting solution (90% aqueous methanol), pH 2.2, extraction time, 6min, ratio of extracting solution to biomass, 1 : 1 (v/w), extraction temperature, 40 oC, adsorbent type, sylopute, and ratio of adsorbent to biomass, 0.08 : 1 (w/w), facilitated 1.97-fold higher recovery of paclitaxel in a shorter extraction time than the conventional solvent extraction process. In addition, biomass-derived tar compounds were successfully removed by the simultaneous process alone (average removal >97%). Using the simultaneous process, the paclitaxel extraction efficiency was improved, biomass-derived tar compounds were removed, and the purification process was simplified at the same time.
[References]
  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93, 2525, 1971
  2. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1, 2006
  3. McGuire WP, Rowinsky EK, Rosenhein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC, Int. J. Gynecol. Obstet., 31, 298, 1990
  4. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  5. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003, 1995
  6. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59, 2002
  7. Baloglu E, Kingston DGI, J. Nat. Prod., 62, 1068, 1999
  8. Zhang B, Yang RY, Liu CZ, Sep. Purif. Technol., 62(2), 480, 2008
  9. Kim WK, Chae HJ, Kim JH, Biotechnol. Bioproc. Eng., 15, 481, 2010
  10. Kwon JH, Choi YH, Chung HW, Lee GD, Int. J. Food Sci. Technol., 41, 67, 2006
  11. Fulzele DP, Satdive RK, J. Chro, 1063, 9, 2005
  12. Chen F, Mo K, Liu Z, Yang F, Hou K, Li S, Zu Y, Yang L, Molecules, 19, 9689, 2014
  13. Shu YY, Ko MY, Chang YS, Microchem J., 74, 131, 2003
  14. Pan X, Liu H, Jia G, Shu YY, Biochem. Eng. J., 5, 173, 2000
  15. Pan XJ, Niu GG, Liu HZ, Chem. Eng. Process., 42(2), 129, 2003
  16. Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281, 2008
  17. Lee JY, Kim JH, Sep. Purif. Technol., 80(2), 240, 2011
  18. Kim GJ, Kim JH, Process Biochem., In Press (2014)., 2014
  19. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS, US Patent, 5,871,979 (1999)., 1999
  20. Jeon KY, Kim JH, Korean J. Biotechnol. Bioeng., 23, 557, 2008
  21. Kim GJ, Park GY, Kim JH, Korean J. Microbiol. Biotechnol., 41, 272, 2013
  22. Jeon YL, Kim JH, Korean J. Chem. Eng., 30(10), 1954, 2013
  23. Oh HJ, Jang HR, Jung KY, Kim JH, Process Biochem., 47, 331, 2012
  24. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21(1), 151, 2015
  25. Chen Y, Xie MY, Gong XF, J. Food Eng., 81(1), 162, 2007
  26. Criado MR, Torre SPD, Pereiro IR, Torrijos RC, J. Chromatogr. A, 1024, 155, 2004
  27. Gfrerer M, Lankmayr E, Anal. Chim. Acta, 533, 203, 2005