Issue
Korean Journal of Chemical Engineering,
Vol.32, No.6, 1001-1008, 2015
Next generation digital microfluidic technology: Electrophoresis of charged droplets
Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.
[References]
  1. Eow JS, Ghadiri M, Chem. Eng. Process., 42(4), 259, 2003
  2. Hase M, Watanabe SN, Yoshikawa K, Phys. Rev. E, 74, 046301, 2006
  3. Jung YM, Oh HC, Kang IS, J. Colloid Interface Sci., 322(2), 617, 2008
  4. Im DJ, Noh J, Moon D, Kang IS, Anal. Chem., 83, 5168, 2011
  5. Hokmabad BV, Sadri B, Charan MR, Esmaeilzadeh E, Colloids Surf. A: Physicochem. Eng. Asp., 401, 17, 2012
  6. Takinoue M, Atsumi Y, Yoshikawa K, Appl. Phys. Lett., 96, 104105, 2010
  7. Mukhopadhyay R, Anal. Chem., 78, 1401, 2006
  8. Washizu M, IEEE T. Ind. Appl., 34, 732, 1998
  9. Pollack MG, Fair RB, Shenderov AD, Appl. Phys. Lett., 77, 1725, 2000
  10. Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ, Sens. Actuators A-Phys., 95, 259, 2002
  11. Abdelgawad M, Wheeler AR, Adv. Mater., 21(8), 920, 2009
  12. Jebrail MJ, Wheeler AR, Curr. Opin. Chem. Biol., 14, 574, 2010
  13. Velev OD, Prevo BG, Bhatt KH, Nature, 426, 515, 2003
  14. Gascoyne TRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrew C, Lab Chip, 4, 299, 2004
  15. Hunt TP, Issadore D, Westervelt RM, Lab Chip, 8, 81, 2008
  16. Issadore D, Franke T, Brown KA, Hunt TP, Westervelt RM, J. Microelectromech. Syst., 18, 1220, 2009
  17. Zhao YJ, Yi UC, Cho SK, J. Microelectromech. Syst., 16, 1472, 2007
  18. Issadore D, Humphry KJ, Brown KA, Sandberg L, Weitz DA, Westervelt RM, Lab Chip, 9, 1701, 2009
  19. Jones TB, Fowler JD, Chang YS, Kim CJ, Langmuir, 19(18), 7646, 2003
  20. Cartier CA, Drews AM, Bishop KJM, Lab Chip, 14, 4230, 2014
  21. Jung YM, Kang IS, Biomicrofluidics, 3, 022402, 2009
  22. Jung YM, Kang IS, Biomicrofluidics, 4, 024104, 2010
  23. Im DJ, Yoo BS, Ahn MM, Moon D, Kang IS, Anal. Chem., 85, 4038, 2013
  24. Jung YM, Oh HC, Kang IS, J. Colloid Interface Sci., 322(2), 617, 2008
  25. Jones TB, Langmuir, 18(11), 4437, 2002
  26. Kang KH, Langmuir, 18(26), 10318, 2002
  27. Im DJ, Kang IS, J. Colloid Interface Sci., 266(1), 127, 2003
  28. Zeng J, Korsmeyer T, Lab Chip, 4, 265, 2004
  29. Young PM, Mohseni K, J. Fluid Eng.-T Asme, 130, 081603, 2008
  30. Link DR, Mongrain EG, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45, 2556, 2006
  31. Niu XZ, Gielen F, deMello AJ, Edel JB, Anal. Chem., 81, 7321, 2009
  32. Thiam AR, Bremond N, Bibette J, Phys. Rev. Lett., 102, 188304, 2009
  33. Ristenpart WD, Bird JC, Belmonte A, Dollar F, Stone HA, Nature, 461, 377, 2009
  34. Mugele F, Nature, 461, 356, 2009
  35. Link DR, Mongrain EG, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45, 2556, 2006
  36. Niu X, Gielen F, DeMello AJ, Edel JB, Anal. Chem., 81, 7321, 2009
  37. Ahn B, Lee K, Panchapakesan R, Oh KW, Biomicrofluidics, 5, 024113, 2011
  38. Guo F, Ji XH, Liu K, He RX, Zhao LB, Guo ZX, Liu W, Guo SS, Zhao XZ, Appl. Phys. Lett., 96, 193701, 2010
  39. Wang W, Yang C, Liu Y, Li CM, Lab Chip, 10, 559, 2010
  40. Ochs HT, Czys RR, Nature, 327, 606, 1987
  41. Ristenpart WD, Bird JC, Belmonte A, Dollar F, Stone HA, Nature, 461, 377, 2009
  42. Eow JS, Ghadiri M, Chem. Eng. J., 85(2-3), 357, 2002
  43. Eow JS, Ghadiri M, Sharif AO, Williams TJ, Chem. Eng. J., 84(3), 173, 2001
  44. Zheng L, Lin ZH, Cheng G, Wu W, Wen X, Lee S, Wang ZL, Nano Energy, 9, 291, 2014
  45. Lin ZH, Cheng G, Wu W, Pradel KC, Wang ZL, ACS Nano, 8, 6440, 2014
  46. Lin ZH, Cheng G, Lee S, Pradel KC, Wang ZL, Adv. Mater., 26(27), 4690, 2014
  47. Kwon SH, Park J, Kim WK, Yang Y, Lee E, Han CJ, Park SY, Lee J, Kim YS, Energy Environ. Sci., 7, 3279, 2014
  48. Cheng G, Lin ZH, Du ZI, Wang ZL, ACS Nano, 8, 1932, 2014
  49. Lin ZH, Cheng G, Lin L, Lee S, Wang ZL, Angew. Chem.-Int. Edit., 52, 12545, 2013
  50. Choi D, Lee H, Im DJ, Kang IS, Lim G, Kim DS, Kang KH, Sci. Rep.-Uk, 3, 2037, 2013
  51. Nemes P, Marginean I, Vertes A, Anal. Chem., 70, 3105, 2007
  52. Hager DB, Dovichi NJ, Klassen J, Kebarle P, Anal. Chem., 66, 3944, 1994
  53. Kelly RT, Page JS, Marginean I, Tang K, Smith RD, Anal. Chem., 80, 5660, 2008
  54. Venter A, Sojka PE, Cooks RG, Anal. Chem., 78, 8549, 2006
  55. Yudistira HT, Nguyen VD, Tran SBQ, Kang TS, Park JK, Byun D, Appl. Phys. Lett., 98, 083501, 2011
  56. Park JU, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA, Nat. Mater., 6(10), 782, 2007
  57. Lee DW, Im DJ, Kang IS, J. Phys. Chem. C, 117, 3246, 2013
  58. Ahn MM, Im DJ, Kim JG, Lee DW, Kang IS, J. Phys. Chem. Lett., 5, 3021, 2014
  59. Quincke G, Pogg. Ann., 113, 513, 1861
  60. Millikan RA, Phys. Rev., 2, 109, 1913
  61. Carruthers JC, Trans. Faraday Soc., 34, 300, 1938
  62. Dickinson W, Trans. Faraday Soc., 37, 140, 1941
  63. Taylor AJ, Wood FW, Trans. Faraday Soc., 53, 523, 1957
  64. Marinova KG, Alargova RG, Denkov ND, Velev OD, Petsev DN, Ivanov IB, Borwankar RP, Langmuir, 12(8), 2045, 1996
  65. Beattie JK, Djerdjev AM, Angew. Chem.-Int. Edit., 43, 3568, 2004
  66. Schoeler AM, Josephides DN, Sajjadi S, Lorenz CD, Mesquida P, J. Appl. Phys., 114, 144903, 2013
  67. Mochizuki T, Mori YH, Kaji N, AIChE J., 36, 1039, 1990
  68. Khayari A, Perez AT, IEEE T. Dielec. Elec. Insul., 9, 589, 2002
  69. Link DR, Mongrain EG, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45, 2556, 2006
  70. Jung YM, Kang IS, Biomicrofluidics, 4, 2010
  71. Jung YM, Kang IS, Biomicrofluidics, 3, 22402, 2009
  72. Liu T, Seiffert S, Thiele J, Abate AR, Weitz DA, Richtering W, Proc. Natl. Acad. Sci. U. S. A., 109, 384, 2012
  73. Bird JC, Ristenpart WD, Belmonte A, Stone HA, Phys. Rev. Lett., 103, 164502, 2009
  74. Zhang YZ, Liu YH, Wang XL, Shen Y, Ji RJ, Cai BP, Langmuir, 29(5), 1676, 2013
  75. Drews AM, Lee HY, Bishop KJM, Lab Chip, 13, 4295, 2013
  76. Lee DW, Im DJ, Kang IS, Appl. Phys. Lett., 100, 221602, 2012
  77. Lee CP, Chang HC, Wei ZH, Appl. Phys. Lett., 101, 014103, 2012
  78. Im DJ, Ahn MM, Yoo BS, Moon D, Lee DW, Kang IS, Langmuir, 28(32), 11656, 2012
  79. Hamlin BS, Ristenpart WD, Phys. Fluids, 24, 012101, 2012
  80. Khorshidi B, Jalaal M, Esmaeilzadeh E, Mohammadi F, J. Colloid Interface Sci., 352(1), 211, 2010
  81. Jalaal M, Khorshidi B, Esmaeilzadeh E, Exp. Therm. Fluid Sci., 34, 1498, 2010
  82. Mhatre S, Thaokar RM, Phys. Fluids, 25, 072105, 2013
  83. Rezai P, Salam S, Selvaganapathy PR, Gupta BP, Lab Chip, 12, 1831, 2012
  84. Ahn B, Lee K, Panchapakesan R, Oh KW, Biomicrofluidics, 5, 024113, 2011
  85. Wang W, Yang C, Liu Y, Li CM, Lab Chip, 10, 559, 2010
  86. Zhou H, Yao S, Lab Chip, 13, 962, 2013
  87. Choi K, Im M, Choi JM, Choi YK, Microfluid. Nanofluid., 12, 821, 2012
  88. Ahn MM, Im DJ, Kang IS, Analyst, 138, 7362, 2013
  89. Im DJ, Noh J, Yi NW, Park J, Kang IS, Biomicrofluidics, 5, 044112, 2011
  90. Perez AT, J. Electrost., 56, 199, 2002
  91. Felici N, Rev. Gen. Elect., 75, 1145, 1966
  92. Lee DW, Im DJ, Kang IS, Langmuir, 29(6), 1875, 2013
  93. Schoeler AM, Josephides DN, Sajjadi S, Mesquida P, Colloids Surf. A: Physicochem. Eng. Asp., 461, 18, 2014
  94. Schoeler AM, Josephides DN, Chaurasia AS, Sajjadi S, Mesquida P, Appl. Phys. Lett., 104, 074104, 2014
  95. Jeon SB, Kim D, Yoon GW, Yoon JB, Choi YK, Nano Energy, 12, 636, 2015
  96. Baygents JC, Saville DA, J. Chem. Soc., Faraday Trans., 87, 1883, 1991
  97. Lee SM, Im DJ, Kang IS, Phys. Fluids, 12, 1899, 2000
  98. Taylor GI, Proc. R. Soc. London Ser A., 291, 159, 1964
  99. Moon D, Im DJ, Lee S, Kang IS, Exp. Therm. Fluid Sci., 53, 251, 2014
  100. Yudistira HT, Nguyen VD, Dutta P, Byun D, Appl. Phys. Lett., 96, 023503, 2010
  101. Levine S, O’Brien RN, J. Colloid Interface Sci., 43, 616, 1973
  102. Hendricks CD, J. Colloid Sci., 17, 249, 1962
  103. Hogan CJ, Biswas P, Chen DR, J. Phys. Chem. B, 113(4), 970, 2009
  104. Kim JG, Im DJ, Jung YM, Kang IS, J. Colloid Interface Sci., 310(2), 599, 2007
  105. Beranek P, Flittner R, Hrobar V, Ethgen P, Pribyl M, AIP Adv., 4, 067103, 2014
  106. Drews AM, Kowalik M, Bishop KJM, J. Appl. Phys., 116, 074903, 2014
  107. Drews AM, Cartier CA, Bishop KJM, Langmuir, 31, 3808, 2015
  108. Lee BS, Cho HJ, Lee JG, Huh N, Choi JW, Kang IS, J. Colloid Interface Sci., 302(1), 294, 2006
  109. Abbott A, Nature, 424, 870, 2003
  110. Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S, Analyst, 136, 473, 2011
  111. Seiler AEM, Spielmann H, Nat. Protocols, 6, 961, 2011
  112. Tormos JC, Lieber D, Baret JC, Harrak AE, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA, Chem. Biol., 15, 427, 2008
  113. Villar G, Graham AD, Bayley H, Science, 340(6128), 48, 2013