Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 761-766, 2015
Synthesis and thermal annealing treatment of octylphosphonic acid-capped CdSe-tetrapod nanocrystals for bulk hetero-junction solar cell applications
CdSe-tetrapod nanocrystals (NCs) were synthesized by using octylphosphonic acid (OPA) as a capping ligand and cadmium oxide (CdO) as a cadmium precursor. The effects of thermal annealing in nitrogen (N2) environment on the chemical composition, morphology, crystal structure and optoelectronic properties of the CdSe-tetrapods have been investigated. Remarkable difference in the morphological and optoelectronic properties between as-synthesized and N2-annealed CdSe NCs was observed. The photoluminescence (PL) peak of N2-annealed CdSe NCs shifted to lower energy and UV-vis absorption spectra shifted to longer wavelength, indicating the size increase and improvement of the crystallinity of the CdSe tetrapods. The power conversion efficiency of bulk hetero-junction solar cells made with the annealed CdSe NCs showed higher value compared with the efficiency of cells made with as-synthesized CdSe NCs.
[References]
  1. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59, 2000
  2. Alivisatos AP, Science, 271(5251), 933, 1996
  3. Brus LE, J. Chem. Phys., 90, 2555, 1986
  4. Jun YW, Jung YY, Cheon J, Bulovic V, Nature, 420, 800, 2002
  5. Ahmadi TS, Wang ZL, Green TC, Henglein A, Elsayed MA, Science, 272(5270), 1924, 1996
  6. Schlamp MC, Peng XG, Alivistos AP, J. Appl. Phys., 82, 5837, 1997
  7. Chan WCW, Nie SM, Science, 281(5385), 2016, 1998
  8. Huynh WU, Dittmer JJ, Alivistos AP, Science, 295, 2425, 2002
  9. Truong NTN, Park C, J. Japn. Appl. Phys., 51, 10NE27, 2012
  10. Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706, 1993
  11. Farva U, Park C, Sol. Energy Mater. Sol. Cells, 94(2), 303, 2010
  12. Dayal S, Kopidakis N, Olson D, Ginley DS, Rumbles G, Nano Lett., 10, 239, 2010
  13. Lee H, Yoon SW, Ahn JP, Suh YD, Lee JS, Lim H, Kim D, Sol. Energy Mater. Sol. Cells, 93(6-7), 779, 2009
  14. Truong NTN, Nguyen TPN, Park C, Int. J. Photoenergy, 10.1155/2013/146582, 146582, 7, 2013
  15. Chou PT, Chen CY, Cheng CT, Pu SC, Wu KC, Cheng YM, Lai CW, Chou YH, Chiu HT, J. Chem. Phys. Phys. Chem., 7, 222, 2006
  16. Yu WW, Wang YA, Peng XG, Chem. Mater., 15, 4300, 2003
  17. Pang Q, Zhao LJ, Cai Y, Nguyen DP, Bastard G, Wang JN, Chem. Mater., 17, 5263, 2005
  18. Katari JE, Colvin VL, Alivisatos AP, J. Phys. Chem., 98(15), 4109, 1994
  19. Alivisatos AP, J. Phys. Chem., 100(31), 13226, 1996
  20. Lorenz JK, Ellis AB, J. Am. Chem. Soc., 120(42), 10970, 1998
  21. Myung N, Bae Y, Bard AJ, Nano Lett., 3, 947, 2003
  22. Kuno M, Lee JK, Dabbousi BO, Mikulec FV, Bawendi MG, J. Chem. Phys., 106(23), 9869, 1997
  23. Vesely CJ, Langer DW, Phys. Rev. B, 4, 451, 1971
  24. Wangner CD, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN (1979)., 1979
  25. Masson DP, Lockwood DJ, Graham MJ, J. Appl. Phys., 82, 1632, 1997
  26. Yang Q, Tang K, Wang F, Wang C, Quian Y, Mater. Lett., 57, 3508, 2003
  27. Hoth N, Schilinsky P, Choulis SA, Brabec CJ, Nano Lett., 8, 2806, 2008