Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 753-760, 2015
Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions
Three composite nanofiltration (NF) membranes made of different substrate materials--polysulfone (PSf), polyethersulfone (PES) and polyetherimide (PEI)--were successfully prepared by interfacial polymerization technique. Prior to filtration tests, the composite NF membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS). It was observed that the surface properties of composite NF membranes were obviously altered with the use of different substrate materials. The separation performance of the prepared composite NF membranes was further evaluated by varying operating conditions, which included feed salt concentration and operating temperature. Experimental results showed that the water flux of all TFC membranes tended to decrease with increasing Na2SO4 concentration in feed solution, due to the increase in feed osmotic pressure. Of the three TFC membranes studied, PSf-based membrane demonstrated the highest salt rejection but lowest water flux owing to its highest degree of polyamide cross-linking as shown in XPS data. With respect to thermal stability, PEI-based TFC membrane outperformed the rest, overcoming the trade-off effect between permeability and rejection when the feed solution temperature was gradually increased from 30 oC to 80 oC. In addition, the relatively smoother surface of hydrophilic PEI-based membrane when compared with PSf-based membrane was found to be less susceptible to BSA foulants, leading to lower flux decline. This is because smoother surface of polyamide layer would have minimum “valley clogging,” which improves membrane anti-fouling resistance.
[References]
  1. Chen SH, Chang DJ, Liou MR, Hsu CS, Lin SS, J. Appl. Polym. Sci., 83(5), 1112, 2002
  2. Lau WJ, Ismail AF, Goh PS, Hilal N, Ooi BS, Sep. Purif. Rev., DOI:10.1080/15422119.2014.882355, 2014
  3. Eriksson P, Environ. Prog., 7, 58, 1988
  4. Liu FN, Zhang GL, Meng Q, Zhang HZ, Chin. J. Chem. Eng., 16(3), 441, 2008
  5. Rahimpour A, Jahanshahi M, Mortazavian N, Madaeni SS, Mansourpanah Y, Appl. Surf. Sci., 256(6), 1657, 2010
  6. Hu D, Xu ZL, Chen C, Desalination, 301, 75, 2012
  7. Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP, J. Appl. Polym. Sci., 94(1), 394, 2004
  8. Jegal J, Min SG, Lee KH, J. Appl. Polym. Sci., 86(11), 2781, 2002
  9. Namvar-Mahboub M, Pakizeh M, Korean J. Chem. Eng., 31(2), 327, 2014
  10. Lau WJ, Ismail AF, Misdan N, Kassim MA, Desalination, 287, 190, 2012
  11. Hu LJ, Zhang SH, Han RL, Jian XG, Appl. Surf. Sci., 258(22), 9047, 2012
  12. Misdan N, Lau WJ, Ismail AF, Desalination, 287, 228, 2012
  13. Li D, Wang H, J. Mater. Chem., 20, 4551, 2010
  14. Wei J, Jian XG, Wu CR, Zhang SH, Yan C, J. Membr. Sci., 256(1-2), 116, 2005
  15. Kim ES, Kim YJ, Yu QS, Deng BL, J. Membr. Sci., 344(1-2), 71, 2009
  16. Il Kim H, Kim SS, J. Membr. Sci., 286(1-2), 193, 2006
  17. Verissimo S, Peinemann KV, Bordado J, J. Membr. Sci., 279(1-2), 266, 2006
  18. Namvar-Mahboub M, Pakizeh M, Sep. Purif. Technol., 119, 35, 2013
  19. Wu CR, Zhang SH, Yang DL, Wei J, Yan C, Jian XG, J. Membr. Sci., 279(1-2), 238, 2006
  20. Han RL, Zhang SH, Hu LJ, Guan SS, Jian XG, J. Membr. Sci., 370(1-2), 91, 2011
  21. Fujiwara N, Matsuyama H, Desalination, 227(1-3), 295, 2008
  22. Kedem O, Katchalsky A, Trans Faraday Soc., 59, 1918, 1963
  23. Pontie M, Buisson H, Diawara CK, Essis-Tome H, Desalination, 157(1-3), 127, 2003
  24. Hidalgo AM, Leon G, Gomez M, Murcia MD, Gomez E, Gomez JL, Desalination, 315, 70, 2013
  25. Spiegler KS, Kedem O, Desalination, 1, 311, 1966
  26. Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D, Sep. Purif. Technol., 14(1-3), 155, 1998
  27. Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE, J. Membr. Sci., 369(1-2), 130, 2011
  28. Lonsdale HK, Merten U, Riley RL, J. Appl. Polym. Sci., 9, 1341, 1965
  29. Paul DR, J. Membr. Sci., 241(2), 371, 2004
  30. Matsuura T, Synthetic Membranes and Membrane Separation Processes, CRC Press (1993)., 1993
  31. Misdan N, Lau WJ, Ismail AF, Matsuura T, Rana D, Desalination, 344, 198, 2014
  32. Lau WJ, Ismail AF, Desalination, 245, 198, 2009
  33. Ong CS, Lau WJ, Ismail AF, Desalin. Water Treat., 50, 245, 2012
  34. Ismail AF, Lau WJ, Desalin. Water Treat., 6, 281, 2009
  35. Mehdizadeh H, Dickson JM, Eriksson PK, Ind. Eng. Chem. Res., 28, 814, 1989
  36. Sharma RR, Chellam S, Environ. Sci. Technol., 39, 5022, 2005
  37. Kulisa K, Chem. Anal. (Warsaw), 49, 665, 2004
  38. Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 188(1), 115, 2001
  39. Misdan N, Lau WJ, Ismail AF, Matsuura T, Desalination, 329, 9, 2013
  40. Liang CZ, Sun SP, Li FY, Ong YK, Chung TS, J. Membr. Sci., 469, 306, 2014
  41. Ong YK, Li FY, Sun SP, Zhao BW, Liang CZ, Chung TS, Chem. Eng. Sci., 114, 51, 2014