Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 743-752, 2015
Morphologies and separation characteristics of polyphenylsulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition
The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity.
[References]
  1. Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, London (1996)., 1996
  2. Ravanchi MT, Kaghazchi T, Kargari A, Desalination, 235(1-3), 199, 2009
  3. Scott K, Handbook of Industrial Membranes, Elsevier Advanced Technology, United Kingdom (1995)., 1995
  4. Zhang Y, Causserand C, Aimar P, Cravedi JP, Water Res., 40, 3793, 2006
  5. Lau WJ, Ismail AF, Desalination, 245(1-3), 321, 2009
  6. Ismail AF, Lau WJ, AIChE J., 55(8), 2081, 2009
  7. Dobrak A, Verrecht B, Van den Dungen H, Buekenhoudt A, Vankelecom IFJ, Van der Bruggen B, J. Membr. Sci., 346, 344, 2011
  8. Lau WJ, Ismail AF, Firdaus S, Sep. Purif. Technol., 104, 26, 2013
  9. White LS, Nitsch AR, J. Membr. Sci., 179(1-2), 267, 2000
  10. Raman LP, Cheryan M, Rajagopalan N, J. Am. Oil Chem. Soc., 73, 219, 1996
  11. Tylkowski B, Tsibranska I, Kochanov R, Peev G, Giamberini M, Food Bioprod. Process, 89, 307, 2011
  12. Geens J, de Witte B, Van der Bruggen B, Sep. Purif. Technol., 42, 2435, 2007
  13. Loeb S, Sourirajan S, Adv. Chem. Ser., 38, 117, 1962
  14. Amirilargani M, Saljoughi E, Mohammadi T, Moghbeli MR, Polym. Eng. Sci., 50(5), 885, 2010
  15. Vandezande P, Gevers LEM, Venkelecom IFJ, Chem. Soc. Rev., 37, 365, 2008
  16. See-Toh YH, Ferreira FC, Livingston AG, J. Membr. Sci., 299(1-2), 236, 2007
  17. Jezowska A, Schipolowski T, Wozny G, Desalination, 189(1-3), 43, 2006
  18. Van der Bruggen B, Geens J, Vandecasteele C, Sep. Sci. Technol., 37(4), 783, 2002
  19. Van der Bruggen B, Geens J, Vandecasteele C, Chem. Eng. Sci., 57(13), 2511, 2002
  20. Darvishmanesh S, Degreve J, Van der Bruggen B, Ind. Eng. Chem. Res., 49(19), 9330, 2010
  21. Soroko I, Livingston A, J. Membr. Sci., 343(1-2), 189, 2009
  22. Soroko I, Lopes MP, Livingston A, J. Membr. Sci., 381(1-2), 152, 2011
  23. Soroko I, Makowski M, Spill F, Livingston A, J. Membr. Sci., 381(1-2), 163, 2011
  24. Namvar-Mahboub M, Pakizeh M, Korean J. Chem. Eng., 31(2), 327, 2014
  25. Wang JW, Yue ZR, Ince JS, Economy J, J. Membr. Sci., 286(1-2), 333, 2006
  26. Aerts S, Vanhulsel A, Buekenhoudt A, Weyten H, Kuypers S, Chen H, Bryjak M, Gevers LEM, Vankelecom IFJ, Jacobs PA, J. Membr. Sci., 275(1-2), 212, 2006
  27. Zeidler S, Katzel U, Kreis P, J. Membr. Sci., 429, 295, 2013
  28. Li XF, De Feyter S, Chen DJ, Aldea S, Vandezande P, Du Prez F, Vankelecom IFJ, Chem. Mater., 20, 3876, 2008
  29. Decker B, Hartmann CT, Carver PI, Keinath SE, Santurri PR, Chem. Mater., 22, 942, 2010
  30. Jullok N, Darvishmanesh S, Luis P, Van der Bruggen B, Chem. Eng. J., 175, 306, 2011
  31. Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy, 33(15), 4178, 2008
  32. Hwang LL, Tseng HH, Chen JC, J. Membr. Sci., 384(1-2), 72, 2011
  33. Scheirs J, Compositional and failure analysis of polymers: A practical approach, John Wiley & Sons, England (2000)., 2000
  34. Darvishmanesh S, Jansen JC, Tasselli F, Tocci E, Luis P, Degreve J, Drioli E, Van der Bruggen B, J. Membr. Sci., 379(1-2), 60, 2011
  35. Whu JA, Baltzis BC, Sirkar KK, J. Membr. Sci., 170(2), 159, 2000
  36. Akbari A, Hamadanian M, Jabbari V, Lehi AY, Bojaran M, Desalin. Water Treat., 46, 96, 2012
  37. Sani NAA, Lau WJ, Ismail AF, J. Polym. Eng., 34, 489, 2014
  38. Sani NAA, Lau WJ, Ismail AF, Jurnal Teknologi, 70, 29, 2014
  39. Holda AK, Aernouts B, Saeys W, Vankelecom IFJ, J. Membr. Sci., 442, 196, 2013
  40. Jansen JC, Darvishmanesh S, Tasselli F, Bazzarelli F, Bernardo P, Tocci E, Friess K, Randova A, Drioli E, Van der Bruggen B, J. Membr. Sci., 447, 107, 2013
  41. Darvishmanesh S, Tasselli F, Jansen JC, Tocci E, Bazzarelli F, Bernardo P, Luis P, Degreve J, Drioli E, Van der Bruggen B, J. Membr. Sci., 384(1-2), 89, 2011
  42. Toh YHS, Loh XX, Li K, Bismarck A, Livingston AG, J. Membr. Sci., 291(1-2), 120, 2007
  43. Geens J, Van der Bruggen B, Vandecasteele C, Chem. Eng. Sci., 59(5), 1161, 2004