Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 731-742, 2015
Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution
The nanofiltration (NF) process is electrostatically governed and the surface free energy plays a key role in the separation of particulates, macromolecules, and dissolved ionic species. Streaming potential measurement and the surface charge mapping by Kelvin probe atomic force mircoscopy (AFM) have been carried out. Forces of interaction near the surface of nanofiltration membranes were further studied by a force spectroscopy using atomic force microscopy. The two membranes used are more negatively charged at high pH values; hence the higher the solution chemistry, the higher and faster will be adhesion of ions on the surface of the nanofiltration membranes. It was observed that the three acquired signals from non-contact AFM (contact potential difference, amplitude and phase) were rigorously connected to the surface structure of the nanofiltration membranes. In addition to the surface structure (roughness), electrostatic interactions can also enhance initial particle adhesion to surfaces of nanofiltration membranes. The performance of the NF membranes was further investigated for the removal of nickel ions from aqueous solution, and the results were correlated to the mechanical responses of the nanofiltration membranes obtained from AFM and the streaming potential measurement.
[References]
  1. Bowen RW, Doneva TA, Stoton AG, Colloids Surf. A: Physicochem. Eng. Asp., 201, 73, 2002
  2. Serrano PT, Yiacoumi S, Tsouris C, J. Chem. Phys., 125, 1, 2006
  3. Huisman IH, Tragardh G, Tragardh C, Pihlajamaki A, J. Membr. Sci., 147(2), 187, 1998
  4. Childress AE, Elimelech M, Environ. Sci. Technol., 34, 3710, 2000
  5. Ariza MJ, Benavente J, J. Membr. Sci., 190(1), 119, 2001
  6. Buksek H, Luxbacher T, Petrinic I, Acta Chim. Slovenica, 57, 700, 2010
  7. Tiraferri A, Elimelech M, J. Membr. Sci., 389, 499, 2012
  8. Shim Y, Lee HJ, Lee S, Moon SH, Cho J, Environ. Sci. Technol., 36, 3864, 2002
  9. Childress AE, Elimelech M, J. Membr. Sci., 119(2), 253, 1996
  10. Brant JA, Childress AE, J. Membr. Sci., 203(1-2), 257, 2002
  11. Kaminski S, Mroginski MA, J. Phys. Chem. B, 114(50), 16677, 2010
  12. Wang L, Molecular dynamics simulations of liquid transport through nanofiltration membranes, Doctoral dissertation, McMaster University, Ontario, Canada (2012)., 2012
  13. Renou R, Ghoufi A, Szymczyk A, Zhu H, Neyt JC, Malfreyt P, J. Phys. Chem. C, 117, 11017, 2013
  14. Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 118, 115, 2001
  15. Song W, Ravindran V, Koel BE, Pirbazari M, J. Membr. Sci., 241(1), 143, 2004
  16. Freger V, Langmuir, 19(11), 4791, 2003
  17. Brant JA, Johnson KM, Childress AE, J. Membr. Sci., 276(1-2), 286, 2006
  18. Akbari A, Homayoonfal M, Jabbari V, Water Sci. Technol., 64, 2404, 2011
  19. Dipankar N, Lun TK, Chung HC, Jung CC, Chyu RR, Che CY, Shen CC, Hwa WT, Desalination, 234, 344, 2008
  20. Schafer AI, Pihlajamaki A, Fane AG, Waite TD, Nystrom M, J. Membr. Sci., 242(1-2), 73, 2004
  21. Dahmani B, Chabene M, J. Chem. Eng. Process Technol, 2, 103, 2011
  22. Choo KH, Kwon DJ, Lee KW, Choi SJ, Environ. Sci. Technol., 36, 1330, 2002
  23. Ji Z, Dong H, Liu M, Hu W, Nano Res., 2, 857, 2009
  24. Rezek B, Ukraintsev E, Kromka A, Nanoscale Res. Lett., 6, 337, 2011
  25. Dianoux R, Martin F, Marchi F, Alandi C, Comin F, J. Chevrier, Phys. Rev. B, 68, 454031, 2003
  26. Boyer L, Houze F, Tonck A, Loubet JL, Georges JM, J. Phys. D-Appl. Phys., 27, 1504, 1994
  27. Hao HW, Baro AM, Saenz JJ, J. Vac. Sci. Technol. B, 9, 1323, 1991
  28. Agboola O, Maree J, Mbaya R, Zvinowanda CM, Molelekwa GF, Jullok N, Van der Bruggen B, Volodine A, Haesendonck CV, Korean J. Chem. Eng., 31(8), 1413, 2014
  29. Kim J, Van der Bruggen B, Environ. Pollut., 158, 2225, 2010
  30. Pendergast MM, Hoek EMV, Energy Environ. Sci., 4, 1946, 2011
  31. Crock CA, Rogensues AR, Shan W, Tarabara VV, Water Res., 47, 3984, 2013
  32. Horcas I, Fernandez R, Rodriguez JMG, Colchero J, Herrero JG, Baro AM, Rev. Sci. Instrum., 78, 013705, 2007
  33. Cappella B, Dietler G, Surf. Sci. Rep., 34, 1, 1999
  34. Fontaine P, Guenoun P, Daillant JA, Rev. Sci. Instrum., 68, 4145, 1997
  35. Frederix PLTM, Bosshart PD, Engel A, Biophys. J., 96, 329, 2009
  36. Welker J, IIIek E, Giessibi FJ, Beilstein J. Nanotechnol., 3, 238, 2012
  37. Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Appl. Phys. Lett., 88, 103109, 2006
  38. Fukuma T, Kobayashi K, Matsushige K, Yamada H, Appl. Phys. Lett., 88, 193109, 2005
  39. Bowen WR, Mohammad AW, Chem. Eng. Res. Des., 76(8), 885, 1998
  40. Elimelech M, Chen WH, Waypa JJ, Desalination, 95, 269, 1994
  41. Bowen WR, Hilal N, Lovitt RW, Wright CJ, J. Membr. Sci., 139(2), 269, 1998
  42. Brant JA, Johnson KM, Childress AE, Colloids Surf. A: Physicochem. Eng. Asp., 280, 45, 2006
  43. Sidek NM, Ali N, Fauzi SAA, The governing factors of nanofiltration membranes separation process performance: A review, Empowering Science, Technology and Innovation Towards Better Tomorrow, EP33, UMTAS (2011)., 2011
  44. Berg P, Hagmeyer G, Gimbel R, Desalination, 113(2-3), 205, 1997