Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 707-716, 2015
Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage
Attapulgite calcined at 973.15K was characterized and utilized as an adsorbent for the removal of heavy metals and neutralization of acid mine drainage (AMD) from a gold mine. Batch adsorption experiments were carried out using a thermostatic shaker. Activated attapulgite showed that it can neutralize AMD as it raised the pH from 2.6 to 7.3 after a residence time of 2 h. Metal ion removal after 2 h was 100% for Cu (II), 99.46% for Fe (II), 96.20% for Co (II), 86.92% for Ni (II) and 71.52% for Mn (II) using a 2.5% w/v activated attapulgite loading. The adsorption best fit the Langmuir isotherm; however, Cu (II), Co (II), and Fe (II) data fit the Freundlich isotherm as well. Calcination at 973.15 K resulted in the reduction of the equilibrium residence time from 4 to 2 h, solid loading reduction from 10 to 2.5% m/v and an increase in maximum adsorption capacity compared with unactivated attapulgite.
[References]
  1. Younger PL, Banwart SA, Hedin RS, Mine water hydrology, pollution, remediation, Dordrecht, The Netherlands, Kluwer Academic (2002)., 2002
  2. Stumm W, Morgan JJ, Aquatic Chemistry, 3rd Ed., Wiley, New York (1996)., 1996
  3. Expert Team of the Inter-Ministerial Committee, Mine water management in the Witwatersrand Gold Fields with special emphasis on acid mine drainage, Report to the Inter-Ministerial Committee on Acid Mine Drainage. Pretoria: Department of Water Affairs (2010)., 2010
  4. Filion MP, Siroois LL, Ferguson K, CIM Bulletin, 83, 33, 1990
  5. Caraballo MA, Macias F, Rotting TS, Nieto JM, Ayora C, Environ. Pollut., 159, 3613, 2011
  6. Murphy CB, Spiegel SJ, Water Pollut. Federat., 54, 849, 1982
  7. Rios CA, Williams CD, Roberts CL, J. Hazard. Mater., 156(1-3), 23, 2008
  8. Zhang HB, Tong ZF, Wei TY, Tang YK, Desalination, 276(1-3), 103, 2011
  9. Falayi T, Ntuli F, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.07.007, 2013
  10. Tutu H, McCarthy TS, Cukrowska E, Appl. Geochem., 23, 3666, 2008
  11. Frost RL, Cash CA, Kloprogge JT, Vibrational Spectroscopy, 16, 173, 1998
  12. Madejova J, Komadel P, Clays Clay Min., 49, 410, 2001
  13. Yan W, Liu D, Tan D, Yuan P, Chen M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 97, 1052, 2012
  14. Hirsiger W, Vonmoos MM, Wiedemann HG, Thermochim. Acta, 13, 223, 1975
  15. Van-Scoyoc GE, Serna CJ, Ahlrichs JL, American Mineralogist, 64, 215, 1979
  16. Dixon JB, Weed SB, Minerals in Soil Environments, 2nd Ed. Soil Science Society of America, Wisconsin, USA (1989)., 1989
  17. Ntuli F, Lewis AE, Chem. Eng. Sci., 64(9), 2202, 2009
  18. Gan F, Zhou J, Wang H, Du C, Chen X, Water Res., 43, 2907, 2009
  19. Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF, Desalination, 154(3), 233, 2003
  20. James EH, Inorganic Chemistry Principles, Harper & Row (1978)., 1978
  21. Juang RS, Wu FC, Tseng RL, Environ. Technol., 18, 525, 1997
  22. Tryball RE, Mass Transfers Operations, 3rd Ed., McGraw-Hill, New York (1980)., 1980
  23. Bhattacharyya KG, Gupta SS, Appl. Clay Sci., 41, 1, 2008
  24. Okoye IP, Obi C, International Arch. Appl. Sci. Technol., 3, 58, 2012
  25. Gupta VK, Ind. Eng. Chem. Res., 37(1), 192, 1998
  26. Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362, 2010
  27. Balintova M, Holub M, Singovszka E, Chem. Eng. Trans., 28, 1, 2012
  28. Boonchom B, Youngme S, Maensiri S, Danvirutai C, J. Alloy. Compd., 454, 78, 2008
  29. Liu XD, Hagihala M, Zheng XG, Meng DD, Guo DX, Chin. Phys. Lett, 28, 1, 2011
  30. Paavo L, Jouni T, ActaChemicaScandinavica, 27, 2287, 1973
  31. Mohammad A, Desalination, 250, 885, 2010
  32. Sposito G, The Chemistry of Soils, New York, Oxford University Press (1989)., 1989