Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 694-701, 2015
Enhanced bio-ethanol production via simultaneous saccharification and fermentation through a cell free enzyme system prepared by disintegration of waste of beer fermentation broth
Current study illustrates the effect of high yeast cell density contained in the waste of beer fermentation broth (WBFB) on bio-ethanol production through simultaneous saccharification and fermentation (SSF). WBFB was disintegrated (DW) and comparatively evaluated against nondisintegrated WBFB (NDW) for bio-ethanol production at variant temperatures. Final bio-ethanol levels of 36.38 g/L and 18.65 g/L at 30 ℃, 4.45 g/L and 43.23 g/L at 40 ℃, and 2.32 g/L and 6.83 g/L at 50 ℃ were achieved with 20% NDW and DW, respectively, after 12 h. DW carried out the simultaneous saccharification and fermentation (SSF) process through cell free enzyme system and was capable of bioethanol production beyond the microbial growth temperature (>30 ℃) of NDW system. The increase in sediment concentration in DW positively influenced the production capabilities of the system producing 43.23 g/L, 54.39 g/L and 62.82 g/L bio-ethanol with 20, 30 and 40% sediments at 40 ℃, respectively. The retardation of bioethanol production at elevated temperature (50 ℃) was expected to be caused by denaturing or digesting of certain enzymes as observed through SDS-PAGE. FTIR analysis also showed the appearance of a new band at approximately 1,590 cm-1 due to unfolding of polypeptide chains at 50 ℃. The overall study reveals the positive influence of increased cell density on ethanol production and presents evidence for decreased fermentation beyond certain temperature limits.
[References]
  1. Prasetyo J, Park EY, Korean J. Chem. Eng., 30(2), 253, 2013
  2. Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ, Enzyme Microb. Technol., 31(3), 274, 2002
  3. Krishna SH, Prasanthi K, Chowdary GV, Ayyanna C, Process Biochem., 33(8), 825, 1998
  4. Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180, 2014
  5. Prasetyo J, Park EY, Korean J. Chem. Eng., 30(2), 253, 2013
  6. He M, Qin H, Yin X, Ruan Z, Tan F, Wu B, Shui Z, Dai L, Hu Q, Korean J. Chem. Eng., DOI: 10.1007/s11814-014-0108-1, 2014
  7. Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051, 2013
  8. Khattak WA, Khan T, Ha JH, Ul-Islam M, Kang MK, Park JK, Enzyme Microb. Technol., 53(5), 322, 2013
  9. Nancy WYH, Chen Z, Brainard AP, Sedlak M, Adv. Biochem. Eng. Biotechnol., 64, 163, 1999
  10. Welch P, Scopes RK, J. Biotechnol., 2, 257, 1985
  11. Scopes RK, Biochem. J., 161, 265, 1977
  12. Khattak WA, Ul-Islam M, Ullah MW, Yu B, Khan S, Park JK, Process Biochem., 49, 357, 2014
  13. Ha JH, Shah N, Ul-Islam M, Park JK, Enzyme Microb. Technol., 49(3), 298, 2011
  14. Ha JH, Gang MK, Khan T, Park JK, Korean J. Chem. Eng., 29(9), 1224, 2012
  15. Khattak WA, Kang M, Ul-Islam M, Park JK, Bioprocess. Biosyst. Eng., 36, 737, 2013
  16. Kushnirov VV, Yeast, 16, 857, 2000
  17. Conzelmann A, Riezman H, Desponds C, Bron C, Embo J., 7, 2233, 1988
  18. Horwath A, Riezman H, Yeast, 10, 1305, 1994
  19. Riezman H, Hase T, Apgm VL, Grivell LA, Suda K, Schatz G, Embo J., 2, 2161, 1983
  20. Khattak WA, Ul-Islam M, Park JK, Korean J. Chem. Eng., 29(11), 1467, 2012
  21. Tilman A, Wolf DH, Yeast, 1, 139, 1985
  22. Berg JM, Tymoczko JL, Stryer L, Biochemistry, 5th Ed., Freeman WH, New York (2002)., 2002
  23. Algar EM, Scopes RK, J. Biotechnol., 2, 275, 1985
  24. Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, Biochemistry, 44, 2585, 2005
  25. Shuler ML, Kargi F, Bioprocess Engineering: Basic concepts, Prentice Hall, New Jersey (2001)., 2001
  26. Postmus J, Canelas AB, Bouwman J, Bakker BM, Gulik WV, de Mattos MJ, J. Biol. Chem., 283, 23524, 2008
  27. Cruz ALB, Hebly M, Duong GH, Wahl SA, Pronk JT, Heijnen JJ, BMC Syst. Biol., 6, 151, 2012
  28. Silverthorn DU, Human Physiology: An Integrated Approach, Addison-Wesley, Boston (2004)., 2004
  29. Kwon SC, Park SJ, Cho JM, J. Ind. Microbiol. Biotechnol., 17, 30, 1996
  30. Rikimaru H, Stanford N, Stein WH, J. Biol. Chem., 248, 2296, 1973
  31. San CC, Rong YT, Yuan CH, J. Food Biochem., 2, 349, 1978
  32. Dong A, Caughey B, Caughey WS, Bhat KS, Coe JE, Biochemistry, 31, 9364, 1992
  33. Susi H, Byler DM, Methods Enzymol., 130, 290, 1986
  34. Byler DM, Susi H, Biopolymers, 25, 469, 1986
  35. Haris PI, Severcan F, J. Mol. Catal. B-Enzym., 7, 207, 1999
  36. Elliott A, Ambrose EJ, Nature, 165, 921, 1950
  37. Krimm S, Bandekar J, Adv. Protein Chem., 38, 181, 1986
  38. Banker J, Biochem. Biophys. Acta, 1120, 23, 1992
  39. Miyazawa T, J. Chem. Phys., 32, 1647, 1960
  40. Jin YG, Fu WW, Ma MH, Afr. J. Biotechnol., 10, 10204, 2011
  41. Wang WH, Li XP, Zhang XQ, Pigm. Resin. Technol., 37, 93, 2008
  42. Kong J, Yu S, Acta. Bioch. Bioph. Sin., 39, 549, 2007
  43. Wilhelmus MMM, de Waal RMW, Verbeek MM, J. Mol. Neurobiol., 35, 203, 2007
  44. Gomez ME, Igartuburu JM, Pando E, Luis FR, Mourente G, J. Agr. Food Chem., 52, 4791, 2004