Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 667-676, 2015
Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies
Copper slag was subjected to in-depth mineralogical characterization by integrated instrumental techniques and evaluated for the efficacy of physical beneficiation and mixed meso-acidophilic bioleaching tests towards recovery of copper. Point-to-point mineral chemistry of the copper slag is discussed in detail to give better insight into the association of copper in slag. Characterization studies of the representative sample revealed the presence of fayalite and magnetite along with metallic copper disseminated within the iron and silicate phases. Physical beneficiation of the feed slag (~0.6% Cu) in a 2 L working volume flotation cell using sodium isopropyl xanthate resulted in Cu beneficiation up to 2-4% and final recovery within 42-46%. On the other hand, a mixed meso-acidophilic bacterial consortium comprised of a group of iron and/or sulfur oxidizing bacteria resulted in enhanced recovery of Cu (~92-96%) from the slag sample. SEM characterization of the bioleached slag residue also showed massive coagulated texture with severe weathered structures. FE-SEM elemental mapping with EDS analysis indicated that the bioleached residues were devoid of copper.
[References]
  1. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157, 2012
  2. Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781, 2012
  3. Shi S, Resour. Conserv. Recycl., 52, 1115, 2008
  4. Liu X, Zhang N, Waste Manage. Res., 29, 1053, 2011
  5. Gorai B, Jana RK, Premchand, Resour. Conserv. Recycl., 39, 299, 2003
  6. Anand S, Rao PK, Jena PK, Hydrometallurgy, 5, 355, 1980
  7. Banza AN, Gock E, Kongolo E, Hydrometallurgy, 67, 63, 2003
  8. Bruckard WJ, Somerville M, Hao F, Miner. Eng., 17(4), 495, 2004
  9. Deng T, Ling Y, Waste Manage. Res., 25, 440, 2007
  10. Altundogan HS, Boyrazli M, Tumen F, Miner. Eng., 17(3), 465, 2004
  11. Arslan C, Arslan F, Hydrometallurgy, 67, 1, 2002
  12. Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762, 2013
  13. Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332, 2013
  14. Ilyas S, Lee JC, Chi R, Hydrometallurgy, 131-132, 138, 2013
  15. Yang T, Xu Z, Wen J, Yang L, Hydrometallurgy, 97, 29, 2009
  16. Krebs W, Bachofen R, Brandl H, Hydrometallurgy, 59, 283, 2001
  17. Wang QH, Yang J, Wang Q, Wu TJ, J. Hazard. Mater., 162(2-3), 812, 2009
  18. Qu Y, Lian B, Mo B, Liu C, Hydrometallurgy, 136, 71, 2013
  19. Rudnik E, Nikiel M, Hydrometallurgy, 89, 61, 2007
  20. Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK, Fuel, 117, 415, 2014
  21. Kumar RN, Nagendran R, J. Hazard. Mater., 169(1-3), 1119, 2009
  22. Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116, 2012
  23. Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra U, Subbaiah T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 31(3), 452, 2014
  24. Das B, Prakash S, Angadi SK, Reddy PSR, Mishra BK, Report No. T/MP/647/March/2008, IMMT, Bhubaneswar, an Internal Report., 2008
  25. Fu B, Zhou H, Zhang R, Qiu G, Int. Biodeter. Biodegrad., 62, 109, 2008
  26. Silverman MP, Lundgren DG, J. Bacteriol., 77, 642, 1959
  27. Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281, 2013
  28. Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159, 2001
  29. Tributsch H, Hydrometallurgy, 59, 177, 2001
  30. Carranza F, Romero R, Mazuelos A, Iglesias N, Forcat O, Hydrometallurgy, 97, 39, 2009
  31. Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ, Bioresour. Technol., 149, 71, 2013
  32. Vestola EA, Kuusenaho MK, Narhi HM, Tuovinen OH, Puhakka JA, Kaksonen JJAH, Hydrometallurgy, 103, 74, 2009