Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 617-628, 2015
Direct numerical simulations of inertial settling of non-Brownian particles
The dynamics of particles settling at moderate Reynolds number is studied with periodic boundary conditions. The particle Reynolds number ranges from 0.1 to 50, and the solid volume fraction ranges from single sphere to 0.4. Particle-fluid interactions are solved by immersed boundary method and particle-particle interactions are solved by discrete element method. The principal results are the average settling velocity and the structure formation of particles. The average sedimentation velocities of particles for moderate Reynolds number showed deviation from the well-known power law, and the difference keeps on increasing with decrease in solid volume fractions. This deviation is removed by proposing the division of the power law into three regions of Reynolds number for dilute and non-dilute regimes. By analyzing the particle structures, this difference is due to the particle arrangements by the wake interactions at moderate Reynolds number.
[References]
  1. Nicolai H, Guazzelli E, Phys. Fluids, 7, 3, 1995
  2. Nicolai H, Herzhaft, Hinch EJ, Oger L, Guazzelli E, Phys. Fluids, 7, 12, 1995
  3. Nicolai H, Peysson Y, Guazzelli E, Phys. Fluids, 8, 855, 1996
  4. Caflisch RE, Luke JHC, Phys. Fluids, 28, 759, 1985
  5. Brenner MP, Phys. Fluids, 11, 754, 1999
  6. Nguyen NQ, Ladd AJC, J. Fluid Mech., 525, 73, 2005
  7. Ladd AJC, Verberg R, J. Stat. Phys., 104, 1191, 2001
  8. Padding JT, Louis AA, Phys. Rev. Lett., 93, 220601, 2004
  9. Padding JT, Louis AA, Phys. Rev. E, 74, 031402, 2006
  10. Swan JW, Brady JF, Phys. Fluids, 19, 113306, 2007
  11. Koo S, Korean J. Chem. Eng., 28(2), 364, 2011
  12. Nishiura D, Shimosaka A, Shirakawa Y, Hidaka J, Kag. Kog. Ronbunshu, 32(4), 331, 2006
  13. Hoogerbrugge PJ, Koelman JMVA, Europhys. Lett., 19, 5, 1992
  14. Cunha FR, Abade GC, Sousa AJ, Hinch EJ, J. Fluid Eng-T ASME, 124, 957, 2002
  15. Stockie JM, Comp. Structures, 87, 701, 2009
  16. Padding JT, Louis AA, Phys. Rev. E, 77, 011402, 2008
  17. Kajishima T, Takiguchi S, Hamasaki H, Miyake Y, JSME Int. J. B-Fluid T, 44, 526, 2001
  18. Simeonov JA, Calantoni J, Int. J. Multiph. Flow, 46, 38, 2012
  19. Cundall PA, Strack ODL, Geotechnique, 29, 47, 1979
  20. Beetstra R, van der Hoef MA, Kuipers JAM, AIChE J., 53(2), 489, 2007
  21. Tsuji Y, Kawaguchi T, Tanaka T, Powder Technol., 77, 79, 1993
  22. Hartman M, Trnka D, Havlin V, Chem. Eng. Sci., 47, 3162, 1992
  23. Ham JM, Homsy GM, Int. J. Multiphase Flow, 14, 533, 1988
  24. Alnaafa MA, Selim MS, AIChE J., 38, 1618, 1992
  25. Davis RH, Birdsell KH, AIChE J., 34, 123, 1988
  26. Di Felice R, Int. J. Multiph. Flow, 25(4), 559, 1999
  27. Richardson JF, Zaki WN, Trans. Inst. Chem. Eng., 32, S82, 1954
  28. Garside J, Aldibouni MR, Ind. Eng. Chem. Proc. Dd., 16, 206, 1977
  29. Kajishima T, Int. J. Heat Fluid Flow, 25, 721, 2004
  30. Kajishima T, Takiguchi S, Int. J. Heat Fluid Flow, 23, 639, 2002
  31. Doychev T, Uhlmann M, Proc. of the 8th Int. Conf. on Multiphase Flow, May 2013, 320., 2013
  32. Batchelor GK, J. Fluid Mech., 52, 245, 1972
  33. Fortes AF, Joseph DD, Lundgren TS, J. Fluid Mech., 177, 467, 1987
  34. Chen YM, Jang CS, Cai P, Fan LS, Chem. Eng. Sci., 46, 2253, 1991
  35. Talini L, Leblond J, Feuillebois F, J. Magn. Reson., 132, 287, 1998
  36. Herrmann HJ, Hong DC, Stanley HE, J. Phys. A, 17, L261, 1984
  37. Wylie JJ, Koch DL, Phys. Fluids, 12, 964, 2000
  38. Xiong QG, Li B, Chen FG, Ma JS, Ge W, Li JH, Chem. Eng. Sci., 65(19), 5356, 2010
  39. Thiele E, J. Chem. Phys., 39, 474, 1963
  40. Wertheim MS, Phys. Rev. Lett., 10, 321, 1963
  41. Hamid A, Yamamoto R, Phys. Rev. E, 87, 022310, 2013
  42. Bossis G, Brady JF, J. Chem. Phys., 87, 5437, 1987
  43. Koch DL, Phys. Fluids A, 5, 1141, 1993