Issue
Korean Journal of Chemical Engineering,
Vol.32, No.4, 609-616, 2015
Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator
We investigated the role of nanofluid in a special car radiator and the effect of its different volume concentrations on pressure drop and friction factor of fluid flow. A mixture of 60/40 ratio of ethylene glycol (EG) and distilled water was used as the host fluid and CuO nanoparticles were dispersed well to make stable nanofluids. The influence of nanofluid concentrations on pressure drop was evaluated in the radiator at three different inlet fluid temperatures (35, 44, 54 ℃). The results demonstrated that the presence of nanoparticles caused an increase in nanofluid pressure drop, which was intensified by increasing nanoparticle concentration as well as decreasing temperature of inlet fluid. A new empirical equation for prediction of nanofluid pressure drop through the radiator was developed as well. Also, with increasing the flow rate, the performance index increased and indicated that application of nanofluid in higher flow rate was affordable.
[References]
  1. Choi SUS, ASME FED 231/MD, 66, 99, 1995
  2. Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, SeifiJamnani M, Int. Commun. Heat Mass, 38, 1283, 2011
  3. Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391, 2010
  4. Heris SZ, Etemad SG, Esfahany MN, Int. Commun. Heat Mass, 33, 529, 2006
  5. Murshed SMS, Leong KC, Yang C, Nguyen N, Int. J. Nanoscience, 7, 325, 2008
  6. Kahani M, Heris SZ, Mousavi SM, J. Dispersion Sci. Technol., 34, 1704, 2013
  7. Meibodi ME, Sefti MV, Rashidi AM, Amrollahi A, Tabasi M, Kalal HS, Int. Commun. Heat Mass, 37, 319, 2010
  8. Hashemi SM, Akhavan-Behabadi MA, Int. Commun. Heat Mass., 39, 144, 2012
  9. Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966, 2008
  10. Asadabadi MR, Abolghasemi H, Maragheh MG, Nasab PD, Korean J. Chem. Eng., 30(3), 733, 2013
  11. Nasiri M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 28(12), 2230, 2011
  12. Kulkarni DP, Vajjha RS, Das DK, Oliva D, Appl. Therm. Eng., 25, 1774, 2008
  13. Leong KY, Saidur R, Kazi SN, Mamun AH, Appl. Therm. Eng., 30, 2685, 2010
  14. Teng TP, Hung YH, Jwo CS, Chen CC, Jeng LY, Particuology, 9, 486, 2011
  15. Das SK, Putra N, Roetzel W, Int. J. Heat Mass Transf., 46(5), 851, 2003
  16. Rao Y, Particuology, 8, 549, 2010
  17. Tseng WJ, Lin KC, Mater. Sci. Eng., 355, 186, 2003
  18. Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042, 2009
  19. Mukesh Kumar PC, Kumar J, Suresh S, J. Mech. Sci. Technol., 27, 239, 2013
  20. Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(7-8), 2059, 2009
  21. Lee J, Mudawar I, Int. J. Heat Mass Transf., 50(3-4), 452, 2007
  22. Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV, Int. J. Heat Fluid Flow, 30, 691, 2009
  23. Boudouh M, Gualous HL, Labachelerie MD, Appl. Therm. Eng., 30, 2619, 2010
  24. Fotukian SM, Esfahany MN, Int. Commun. Heat Mass, 37, 214, 2010
  25. He YR, Jin Y, Chen HS, Ding YL, Cang DQ, Lu HL, Int. J. Heat Mass Transf., 50(11-12), 2272, 2007
  26. Ko GH, Heo K, Lee K, Kim DS, Kim C, Sohn Y, Choi M, Int. J. Heat Mass Transf., 50(23-24), 4749, 2007
  27. Sun TF, Teja AS, J. Chem. Eng. Data, 48(1), 198, 2003
  28. Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151, 1998
  29. Drew DA, Passman SL, Theory of multi component fluids, Springer, Berlin (1999)., 1999
  30. Sharma KV, Sundar LS, Sarma PK, Int. Commun. Heat Mass, 36, 503, 2009
  31. Xuan Y, Li Q, J. Heat Transf. -Trans. ASME, 125, 151, 2003
  32. Shokrgozar M, Heris SZ, Pourfarhang S, Shanbedi M, Noie SH, J. Dispersion Sci. Technol., 35, 677, 2014
  33. Brognaux LJ, Webb RL, Chamra LM, Chung BY, Int. J. Heat Mass Transf., 40(18), 4345, 1997
  34. Kahani M, Heris SZ, Mousavi SM, Powder Technol., 246, 82, 2013