Issue
Korean Journal of Chemical Engineering,
Vol.32, No.5, 939-949, 2015
Monte Carlo simulation of free energy for the solid-liquid equilibrium of methane
The thermodynamic properties of methane, particularly for solid-liquid equilibrium, are calculated by Monte Carlo simulation. For various potential models of methane, we explicitly calculated free energies and chemical potentials of the solid and liquid phases of methane by using the expanded ensemble method and the thermodynamic integration method. The Einstein-molecule method combined with the expanded ensemble method is used for the solid phase, and thermodynamic integration for the liquid phase. Coexistence properties such as melting temperature, entropy change and enthalpy change of melting are predicted and compared with experiment. Among the potential models studied, the OPLS-AA model shows the best performance in predicting the solid-liquid coexistence properties of methane. The melting temperature at zero pressure is predicted to be 92.6 K, in good agreement with the experimental value of 90.6 K. While other all-atom potential models reasonably predict the density of solid methane within an error of 5%, they tend to underestimate the melting temperature. The OPLS-AA potential model yields the most accurate value for the entropy change of melting, predicted to be 8.71 J/mol·K. This is within an error of 16%, compared to the experimental value of 10.4 J/mol·K. Also, the enthalpy change of melting is predicted to be 0.81 kJ/mol with an error of 14%, compared to the experimental value of 0.94 kJ/mol.
[References]
  1. Press W, J. Chem. Phys., ., 56, 2597, 1972
  2. Thiery MM, Fabre D, Kobashi K, J. Chem. Phys., 83, 6165, 1985
  3. Hebert P, Polian A, Loubeyre P, Le Toullec R, Phys. Rev. B, 36, 9196, 1987
  4. Bini R, Ulivi L, Jodl HJ, Salvi PR, J. Chem. Phys., 103(4), 1353, 1995
  5. Bini R, Pratesi G, Phys. Rev. B, 55, 14800, 1997
  6. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry.
  7. Bounds DG, Klein ML, Patey GN, J. Chem. Phys., 72, 5348, 1980
  8. Williams DE, J. Chem. Phys., 47, 4680, 1967
  9. Righini R, Maki K, Klein ML, Chem. Phys. Lett., 80, 301, 1981
  10. El-Sheikh SM, Barakat K, Salem NM, J. Chem. Phys., 124, 124517, 2006
  11. Fitzwater S, Bartell LS, J. Am. Chem. Soc., 98, 5107, 1976
  12. Schoen M, Hoheisel C, Beyer O, Mol. Phys., 58, 699, 1986
  13. Saager B, Fischer J, Fluid Phase Equilib., 57, 35, 1990
  14. Nagy J, Weaver DF, Smith VH, J. Phys. Chem., 99(20), 8058, 1995
  15. Stassen H, J. Mol. Struct.: THEOCHEM, 464, 107, 1999
  16. Murad S, Gubbins KE, Lykos P, in ACS Symp. Ser., 62, 1978
  17. Jorgensen WL, Maxwell DS, Tiradorives J, J. Am. Chem. Soc., 118(45), 11225, 1996
  18. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN, J. Chem. Phys., 96, 1776, 1992
  19. Vega C, Noya EG, J. Chem. Phys., 127, 154113, 2007
  20. Frenkel D, Smit B, Understanding Molecular Simulations, 2nd Ed., Academic Press, USA, 2002
  21. Kofke DA, J. Chem. Phys., 98, 4149, 1993
  22. Martin MG, Siepmann JI, J. Phys. Chem. B, 102(14), 2569, 1998
  23. Parrinello M, Rahman A, J. Appl. Phys., 52, 7182, 1981
  24. Yashonath S, Rao CNR, Mol. Phys., 54, 245, 1985
  25. Kim M, Chang J, Sandler SI, J. Chem Phys., 140, 084110, 2014
  26. Frenkel D, Ladd AJC, J. Chem. Phys., 81, 3188, 1984
  27. Polson JM, Trizac E, Pronk S, Frenkel D, J. Chem. Phys., 112(12), 5339, 2000
  28. Almarza NG, J. Chem. Phys., 126, 211103, 2007
  29. Baez LA, Clancy P, Mol. Phys., 86, 385, 1995
  30. Vlot MJ, Huinink J, van der Eerden JP, J. Chem. Phys., 110(1), 55, 1999
  31. Chang J, Sandler SI, J. Chem Phys., 125, 054705, 2006
  32. McQuarrie DA, Statistical Mechanics, Harper and Row, USA, 1976
  33. Vega C, Sanz E, Abascal JLF, Noya EG, J. Phys.: Condens. Matter, 20, 153101, 2008
  34. Perez-Sanchez G, Gonzalez-Salgado D, Pineiro M, Vega C, J. Chem. Phys., 138, 084506, 2013
  35. Chang J, Sandler SI, J. Chem. Phys., 118(18), 8390, 2003
  36. Chang J, Sandler SI, J. Chem. Phys., 121(15), 7474, 2004
  37. Chang J, Lenhoff AM, Sandler SI, J. Phys. Chem. B, 109(41), 19507, 2005
  38. Andersen HC, Chandler D, Weeks JD, J. Chem. Phys., 56, 3812, 1972
  39. Khare AA, Rutledge GC, J. Chem. Phys., 110(6), 3063, 1999
  40. Khare AA, Rutledge GC, J. Phys. Chem. B, 104(15), 3639, 2000
  41. Boulougouris GC, Errington JR, Economou IG, Panagiotopoulos AZ, Theodorou DN, J. Phys. Chem. B, 104(20), 4958, 2000
  42. Chang J, J. Chem. Phys., 131, 074103, 2009
  43. Chang J, Korean J. Chem. Eng., 28(2), 597, 2011
  44. Bol’shutkin DN, Gasan VM, Prokhvatilov AI, J. Struct. Chem., 12, 670, 1971
  45. Stryland JC, Crawford JE, Mastoor MA, Can. J. Phys., 38, 1546, 1960
  46. Grace JD, Kennedy GC, J. Phys. Chem. Solids, 28, 977, 1967
  47. Yagi T, Suzuki H, Proc. Jpn. Acad B, 66, 167, 1990