Issue
Korean Journal of Chemical Engineering,
Vol.32, No.5, 911-916, 2015
Low temperature synthesis of various transition metal oxides and their antibacterial activity against multidrug resistance bacterial pathogens
We report on the synthesis and characterization of various transition metal oxides, ZnO, CuO, TiO2 and Fe2O3, using one pot wet chemical method at low temperature. The prepared metal oxide nanoparticles were characterized by X-ray diffraction (XRD), Raman and transmission electron microscopy (TEM) analyses. We tested antibacterial activity of as-prepared transition metal oxides against various multi-drug resistance bacterial pathogens such as Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. XRD and TEM analyses revealed the average crystallite sizes were 18 nm, 20 nm, 10 nm and 22 nm for ZnO, CuO, TiO2 and Fe2O3 nanoparticles, respectively. Further, the bacterial strains were grown in presence of different concentrations of four nanoparticles and it is evident from the results that ZnO, CuO nano particles showed greater bactericidal effect than nano-TiO2 and nano-Fe2O3, though nano-TiO2 possess less particle size than other fabricated metal oxide nanoparticles.
[References]
  1. Tenover FC, Am. J. Medicine, 119, 3, 2006
  2. Marcato PD, Duran N, J. Nanosci. Nanotechnol., 8, 2216, 2008
  3. Singh R, Singh NH, J. Biomed. Nanotechnol., 7, 489, 2011
  4. Rizwan W, Young-Soon K, Amrita M, Soon-II Y, Shin HS, J. Nanoscale Res. Lett., 5(10), 1675, 2010
  5. Priyanka G, Brian P, David WB, Wenjie H, William PJ, Anne JA, J. Bio. Eng., 3(9), 1, 2009
  6. Sawai J, J. Microbiol. Methods, 54, 177, 2003
  7. Soltani M, Ghodratnema M, Ahari H, Mousavi HAE, Atee M, Dastmalchi F, Rahmanya J, International Journal of Veterinary Research, 3(2), 137, 2009
  8. Wang Z, Lee Y, Wu B, Chemosphere, 80, 525, 2010
  9. Mohsen J, Zahra B, Afr. J. Biotechnol., 7(25), 4926, 2008
  10. Sobha K, Surendranath K, Meena V, Jwala KT, Swetha N, Latha KSM, J. Biotechnol. Mol. Bio. Rev., 5(1), 1, 2010
  11. Laura KA, Delina YL, Pedro JJA, J. Water Res., 40, 3527, 2006
  12. Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex P, J. Appl. Phys. Lett., 90(21), 1, 2007
  13. Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP, International Journal of Antimicrobial Agents, 40, 135, 2012
  14. Iravani S, Green Chem., 13, 2638, 2011
  15. Bai S, Hu J, Li D, Luo R, Chena A, Liub CC, J. Mater. Chem., 21, 12288, 2011
  16. Xu JF, Ji W, Shen X, Tang SH, J. Solid State Chem., 147, 516, 1999
  17. Ohsaka T, J. Phys. Soc. Jpn., 48, 1661, 1980
  18. Thierry D, Persson D, Legraph C, Delichere D, Joiret S, Pallota C, Hugot-Legoff A, J. Electrochem. Soc., 135, 305, 1988
  19. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A, Adv. Funct. Mater., 15(10), 1708, 2005
  20. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’Neill AJ, York DW, Progress in Natural Science, 18, 939, 2008
  21. Baek Y, An Y, Sci. Total Environ., 409, 1603, 2011
  22. Sawai J, Yoshikawa T, J. Appl. Microbiol., 96(4), 803, 2004
  23. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP, Int. J. Antimicrob. Agents, 33(6), 587, 2009
  24. Keenan CR, Sedlak DL, Environ. Technol., 42(4), 1262, 2008
  25. Allahverdiyev M, Abamor ES, Bagirova M, Rafailovich M, Future Microbiology, 6, 933, 2011
  26. Brayner R, Nano Today, 3(1-2), 48, 2008