Issue
Korean Journal of Chemical Engineering,
Vol.32, No.5, 852-859, 2015
Mesoporous silica with monodispersed pores synthesized from the controlled self-assembly of silica nanoparticles
Silica nanoparticles with different sizes (ranging from 10 nm to 104 nm) and size distributions were synthesized by semi-batch and semi-batch/batch methods of the Stober process. Then the amorphous silica with different surface areas (ranging from 30m2/g to 400m2/g) and pores (ranging from 3 nm to 33 nm) were obtained by various aging treatments and drying methods of the synthesized colloidal silica sol. The aging treatment resulted in the monodispersed pore distribution and decreased BET surface area of silica. The high-humidity drying method led to the mesoporous silica with uniform pores and decreased small pores. As the silica was obtained by the arrangement of silica nanoparticles, the pore diameter and pore distribution of mesoporous silica were directly related to the size and distribution of nanoparticles. Furthermore, this study offered a new thought for the synthesis of other mesoporous materials with uniform pore distributions.
[References]
  1. Hrubesh LW, Coronado PR, Satcher JH, J. Non-Cryst. Solids, 285, 328, 2001
  2. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR, Science, 284(5414), 622, 1999
  3. Smirnova I, Suttiruengwong S, Arlt W, J. Non-Cryst. Solids, 350, 54, 2004
  4. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62, 1968
  5. Huang Y, Pemberton JE, Colloids Surf., A, 377, 76, 2011
  6. Lei ZB, Xiao Y, Dang LQ, Lu M, You WS, Micropor. Mesopor. Mater., 96, 127, 2006
  7. Lindberg R, Sjoblom J, Sundholm G, Colloids Surf., A, 99, 79, 1995
  8. Scott Fogler H, Elements of Chemical Reaction Engineering, Prentice-Hall of India, 2004
  9. Kim KD, Kim HT, J. Sol-Gel Sci. Technol., 25, 183, 2002
  10. Hartlen KD, Athanasopoulos APT, Kitaev V, Langmuir, 24(5), 1714, 2008
  11. Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T, J. Colloid Interface Sci., 360(1), 1, 2011
  12. Tang JW, Zhou XF, Zhao DY, Lu GQ, Zou J, Yu CZ, J. Am. Chem. Soc., 129(29), 9044, 2007
  13. Kuroda Y, Yamauchi Y, Kuroda K, Chem. Commun., 46, 1827, 2010
  14. Johnson SA, Ollivier PJ, Mallouk TE, Science, 283(5404), 963, 1999
  15. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH, Langmuir, 21(4), 1516, 2005
  16. Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 1, 1991
  17. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847, 1950
  18. Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT, J. Colloid Interface Sci., 266(2), 346, 2003
  19. Matsoukas T, Gulari E, J. Colloid Interface Sci., 124, 252, 1988
  20. Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston, 1990
  21. Kurumada KI, Nakabayashi H, Murataki T, Tanigaki M, Colloids Surf., A, 139, 163, 1998
  22. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603, 1985
  23. Lee S, Cho IS, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS, Chem. Mater., 22, 1958, 2010
  24. Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl. Mater. Interfaces, 3, 1538, 2011
  25. Wang C, Zhang YH, Dong L, Fu LM, Bai YB, Li TJ, Xu JG, Wei Y, Chem. Mater., 12, 3662, 2000
  26. Micheletto R, Fukuda H, Ohtsu M, Langmuir, 11(9), 3333, 1995
  27. Huang Y, Pemberton JE, Colloids Surf., A, 360, 175, 2010