Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 552-562, 2015
Thermal curing and degradation kinetics of terpolymer resins derived from vanillin oxime, formaldehyde and p-chloro-/p-methylacetophenone
A novel class of linear terpolymer resins have been prepared from various macromers formed by vanillin oxime (VO), formaldehyde (F) and p-chloro/p-methylacetophenone in the presence of an acid as catalyst by convenient polycondensation process. The conversion of different macromers into respective terpolymeric resin was studied by DSC analysis from -50 ℃ to 250 ℃. The first thermal transition endotherms ranging from 108-137 ℃ (VOFCA) and 125-150 ℃ (VOFMA) are due to expulsion of water molecules, and the second thermal transition exotherms 177-247 ℃ (VOFCA) and 183.9-249.8 ℃ (VOFMA) are attributed to the formation of methylene linkage between macromers moieties by utilizing methlol groups at terminals. The activation energy required for conversion of methylol into methylene groups for VOFCA and VOFMA was 3.4 and 3.9 kJ/mol, respectively. Structural confirmations were determined through IR, Uv-Vis, 1H NMR spectroscopy and GPC data. The activation energy (Ea) and thermodynamic parameters of the thermal decomposition process were investigated with thermogravimetric analysis (TGA) by isoconversional integral Kissinger-Akahira-Sunose (KAS) and differential Friedman methods. Empirical kinetic models, as well as generalized master plots, were applied to explain the degradation mechanisms of terpolymer resins. The degradation reaction follows Avrami-Erofeev (nucleation and growth) at initial stage to Jander (three-dimensional diffusion) model for PVOMAF and Jander (two-dimensional diffusion) for PVOFCA governed mechanisms. Among all the tested terpolymers, both resins revealed better activity compared to standard drugs as Gentamycin, Amphicilin, Chloramphenicol, Ciprofloxacin and Noorfloxacin.
[References]
  1. Priefert H, Rabenhorst J, Steinbuchel A, Appl. Microbiol. Biotechnol., 56(3-4), 296, 2001
  2. da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE, Chem. Eng. Res. Des., 87(9A), 1276, 2009
  3. Gandini A, Green Chem., 13, 1061, 2011
  4. Sinha AK, Sharma UK, Sharma N, Int. J. Food Sci. Nutr., 59, 299, 2008
  5. Chauhan NPS, Kataria P, Chaudhary J, Ameta SC, Int. J. Polym. Mater., 61, 57, 2012
  6. Chauhan NPS, Des. Monomers Polym., 15, 587, 2012
  7. Joseph FS, Joshua MS, John JLS, Kaleigh HR, Richard PW, Green Chem., 14, 2346, 2012
  8. Amarasekara AS, Wiredu B, Razzaq A, Green Chem., 14, 2395, 2012
  9. Shulman GP, Lochte HW, J. Appl. Polym. Sci., 10, 619, 1996
  10. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1-2), 1, 2011
  11. Vyazovkin S, J. Comput. Chem., 22, 178, 2001
  12. Chauhan NPS, J. Macromol. Sci. Pure Appl. Chem., 49, 706, 2012
  13. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ, Polym. Degrad. Stab., 93, 90, 2008
  14. Alonso MV, Oliet M, Dominguez JC, Rojo E, Rodriguez F, J. Therm. Anal. Calorim., 105, 349, 2011
  15. Perez JM, Fernandez A, J. Appl. Polym. Sci., 123(5), 3036, 2012
  16. Dominguez JC, Alonso MV, Oliet M, Rojo E, Rodriguez F, Thermochim. Acta, 498(1-2), 39, 2010
  17. Chauhan NPS, Ameta SC, Polym. Degrad. Stab., 96, 1420, 2011
  18. Chauhan NPS, J. Therm. Anal. Calorim., 110, 1377, 2012
  19. Chauhan NPS, J. Macromol. Sci. Pure Appl. Chem., 49, 655, 2012
  20. Chauhan NPS, J. Ind. Eng. Chem., 19(3), 1014, 2013
  21. Chauhan NPS, Des. Monomers Polym., 17, 176, 2014
  22. Chauhan NPS, Ameta R, Ameta SC, J. Appl. Polym. Sci., 122(1), 573, 2011
  23. Malek J, Thermochim. Acta, 200, 257, 1992
  24. Sbirrazzuoli N, Girault Y, Elegant L, Thermochim. Acta, 249, 179, 1995
  25. Iyer BD, Mathakiya IA, Shah AK, Rakshit AK, Polym. Int., 49, 685, 2000
  26. Lein EJ, Hansch C, Anderson SM, J. Med. Chem., 11, 430, 1968
  27. Zhao WH, Hu ZO, Okubo S, Hara Y, Shimamura T, Antimicrob. Agents Chemother., 45, 1737, 2001
  28. Gottenbos BG, Van-der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ, Biomaterials, 24, 2707, 2003