Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 534-539, 2015
Synthesis of poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate)-capped silver nanoparticles and their application to blue polymer light-emitting diodes
Organic light-emitting diodes (OLED) and polymer light-emitting diodes (PLED) are promising candidates for future display applications due to their superior properties, but their efficiency and stability need to be improved to expand their application to large-size display panels and lightings. One of the most remarkable ways to enhance the efficiency of PLEDs is to incorporate metal nanoparticles and utilize their localized surface plasmon resonance (LSPR). We report on the improvement of blue PLEDs efficiency by the insertion of silver nanoparticles (Ag NPs) capped by poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT: PSS). Ag NPs were synthesized with PEDOT: PSS as a stabilizer and then deposited on an indium tin oxide (ITO) anode using a simple spin-coating process without any aggregation. The result of deposition was confirmed by SEM and TEM images, and by Raman spectrum. Optical properties of the PEDOT: PSS-capped Ag NPs on ITO and the interaction between Ag NPs and Lumation blueJ, a blue light-emitting polymer, were measured using a UV-Vis spectrophotometer, a photoluminescence (PL) spectrophotometer, and a time-resolved photoluminescence spectrophotometer (TRPL). As a result, the introduction of PEDOT: PSS-capped Ag NPs to the blue PLEDs was found to have been successfully conducted. The fabricated blue PLEDs with Ag NPs exhibited a 15% increase of external quantum efficiency. This was thought to originate from the localized surface plasmon coupling of the PEDOT: PSS-capped Ag NPs with Lumation BlueJ.
[References]
  1. Tang CW, Vanslyke SA, Appl. Phys. Lett., 51, 913, 1987
  2. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151, 1998
  3. Sun YR, Giebink NC, Kanno H, Ma BW, Thompson ME, Forrest SR, Nature, 440, 908, 2006
  4. Kim J, Song M, Seol J, Hwang H, Park C, Korean J. Chem. Eng., 22(4), 643, 2005
  5. Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K, Nature, 421, 829, 2003
  6. Wang ZB, Helander MG, Qiu J, Puzzo DP, Greiner MT, Hudson ZM, Wang S, Liu ZW, Lu ZH, Nat. Photon., 5, 753, 2011
  7. White MS, Kaltenbrunner M, Glowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DAM, Miron MC, Major Z, Scharber MC, Sekitani T, Someya T, Bauer S, Sariciftci NS, Nat. Photon., 7, 811, 2013
  8. Zhu X, Lee DH, Chae H, Cho SM, Korean J. Chem. Eng., 27(2), 683, 2010
  9. Hutter E, Fendler JH, Adv. Mater., 16(19), 1685, 2004
  10. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP, Nat. Mater., 7(6), 442, 2008
  11. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP, Nat. Mater., 10(8), 631, 2011
  12. Jiang J, Bosnick K, Maillard M, Brus L, J. Phys. Chem. B, 107(37), 9964, 2003
  13. Lee SJ, Morrill AR, Moskovits M, J. Am. Chem. Soc., 128(7), 2200, 2006
  14. Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ, Angew. Chem. Int. Ed., 50, 5519, 2011
  15. Wang DH, Kim JK, Lim GH, Park KH, Park OO, Lim B, Park JH, RSC Adv., 2, 7268, 2012
  16. Yang KY, Choi KC, Ahn CW, Opt. Express, 17, 11495, 2009
  17. Chen SH, Jhong JY, Opt. Express, 19, 16843, 2011
  18. Heo M, Cho H, Jung JW, Jeong JR, Park S, Kim JY, Adv. Mater., 23(47), 5689, 2011
  19. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW, Song MH, Kim BS, Kim JY, Nat. Photon., 7, 732, 2013
  20. Gu Y, Zhang DD, Ou QD, Deng YH, Zhu JJ, Cheng L, Liu Z, Lee ST, Li YQ, Tang JX, J. Mater. Chem. C, 1, 4319, 2013
  21. Kim GP, Park BM, Chang HJ, Electron. Mater. Lett., 10, 491, 2014
  22. Zhang DD, Wang R, Ma YY, Wei HX, Ou QD, Wang QK, Zhou L, Lee ST, Li YQ, Tang JX, Org. Electron., 15, 961, 2014
  23. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A, Nat. Mater., 3(9), 601, 2004
  24. Ming T, Chen HJ, Jiang RB, Li Q, Wang JF, J. Phys. Chem. Lett., 3, 191, 2012
  25. Balamurugan A, Ho KC, Chen SM, Synthe. Met., 159, 2544, 2009
  26. Woo S, Jeong JH, Lyu HK, Han YS, Kim Y, Nanoscale Res. Lett., 7, 641, 2012
  27. Vosgueritchian M, Lipomi DJ, Bao ZA, Adv. Funct. Mater., 22(2), 421, 2012
  28. Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S, Macromolecules, 32(20), 6807, 1999
  29. Rasmark PJ, Andersson M, Lindgren J, Elvingson C, Langmuir, 21(7), 2761, 2005
  30. Amendola V, Bakr OM, Stellacci F, Plasmonics, 5, 85, 2010
  31. Park HJ, Vak D, Noh YY, Lim B, Kim DY, Appl. Phys. Lett., 90, 161107, 2007
  32. Jones M, Nedeljkovic J, Ellingson RJ, Nozik AJ, Rumbles G, J. Phys. Chem. B, 107(41), 11346, 2003