Issue
Korean Journal of Chemical Engineering,
Vol.32, No.3, 521-533, 2015
High-pressure solubility of carbon dioxide in pyrrolidinium-based ionic liquids: [bmpyr][dca] and [bmpyr][Tf2N]
Solubility data of carbon dioxide (CO2) in two pyrrolidinium-based ionic liquids: 1-butyl-1-methylpyrrolidinium dicyanamide ([bmpyr][dca]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr] [Tf2N]) are presented at pressures up to about 30MPa and temperatures from 303.2 K to 343.2 K. The solubility was determined by measuring bubble or cloud point pressures of mixtures of CO2 and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The CO2 solubility in the ionic liquid in terms of the mole fraction or the molality increased with the increase of the equilibrium pressure at a given temperature, but decreased with the increase of temperature at a given pressure. At a given temperature, the mole fraction of CO2 dissolved in the ionic liquid increased rapidly as pressure increased. CO2 solubility in the mole fraction almost reached saturation around 0.65 for [bmpyr][dca] and around 0.8 for [bmpyr][Tf2N], respectively. The experimental data for the CO2+ ionic liquid systems were correlated using the Peng-Robinson equation of state (PR-EoS). The mixing rules of the Wong-Sandler type rather than the classical mixing rules of the van der Waals type were coupled with the PR-EoS. The resulting modeling approach proved to be able to correlate the CO2 solubilities in aforementioned ionic liquids over the aforementioned range of temperature and pressure within 5% average deviations.
[References]
  1. Ramdin M, de Loos TW, Vlugt TJH, Ind. Eng. Chem. Res., 51(24), 8149, 2012
  2. Haszeldine RS, Science, 325, 1647, 2009
  3. Gough C, Int. J. Greenhouse Gas Control, 2, 155, 2008
  4. Rochelle GT, Science, 325, 1652, 2009
  5. Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467, 2007
  6. Zhao H, Chem. Eng. Commun., 193(12), 1660, 2006
  7. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739, 2009
  8. Kedra-Krolik K, Fabrice M, Jaubert JN, Ind. Eng. Chem. Res., 50(4), 2296, 2011
  9. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366, 2005
  10. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF, J. Phys. Chem. B, 111(30), 9001, 2007
  11. Jacquemin J, Husson P, Majer V, Costa-Gomes MF, J. Solution Chem., 36, 967, 2007
  12. Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282, 2008
  13. Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728, 2008
  14. Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105, 2009
  15. Hasib-ur-Rahman M, Siaj M, Larachi F, Chem. Eng. Process., 49(4), 313, 2010
  16. Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817, 2010
  17. Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305, 2010
  18. Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908, 2010
  19. Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891, 2010
  20. Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147, 2011
  21. Yim JH, Song HN, Yoo KP, Lim JS, J. Chem. Eng. Data, 56(4), 1197, 2011
  22. Jung JY, Lee BC, Anal. Sci. Technol., 24(6), 467, 2011
  23. Jung YH, Jung JY, Jin YR, Lee BC, Baek IH, Kim SH, J. Chem. Eng. Data, 57(12), 3321, 2012
  24. Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474, 2013
  25. Mejia I, Stanley K, Canales R, Brennecke JF, J. Chem. Eng. Data, 58, 2642, 2013
  26. Lei ZG, Dai CN, Chen BH, Chem. Rev., 114(2), 1289, 2014
  27. Nam SK, Lee BC, Anal. Sci. Technol., 27(2), 79, 2014
  28. Ally MR, Braunstein J, Baltus RE, Dai S, DePaoli DW, Simonson JM, Ind. Eng. Chem. Res., 43(5), 1296, 2004
  29. Ji XY, Adidharma H, Fluid Phase Equilib., 293(2), 141, 2010
  30. Yazdizadeh M, Rahmani F, Forghani AA, Korean J. Chem. Eng., 28(1), 246, 2011
  31. Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128, 2012
  32. Chen YS, Mutelet F, Jaubert JN, J. Phys. Chem. B, 116(49), 14375, 2012
  33. Macias-Salinas R, Chavez-Velasco JA, Aquino-Olivos MA, de la Cruz JLM, Sanchez-Ochoa JC, Ind. Eng. Chem. Res., 52(22), 7593, 2013
  34. Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15, 2010
  35. Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland, 1995
  36. Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data, 45, 851, 2000
  37. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall, NJ, USA, 1999
  38. Lazzus JA, Commun. Comput. Phys., 14(1), 107, 2013
  39. Orbay H, Sandler SI, Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, Cambridge University Press, UK, 1998
  40. Wong DSH, Sandler SI, AIChE J., 38, 671, 1992
  41. Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838, 2012
  42. Winnick J, Chemical Engineering Thermodynamics, Wiley, New York, NY, 451, 1997
  43. IMSL Math/Library: FORTRAN Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc., 1994